Turbulent coherent structures and early life below the Kolmogorov scale.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Major evolutionary transitions, including the emergence of life, likely occurred in aqueous environments. While the role of water's chemistry in early life is well studied, the effects of water's ability to manipulate population structure are less clear. Population structure is known to be critical, as effective replicators must be insulated from parasites. Here, we propose that turbulent coherent structures, long-lasting flow patterns which trap particles, may serve many of the properties associated with compartments - collocalization, division, and merging - which are commonly thought to play a key role in the origins of life and other evolutionary transitions. We substantiate this idea by simulating multiple proposed metabolisms for early life in a simple model of a turbulent flow, and find that balancing the turnover times of biological particles and coherent structures can indeed enhance the likelihood of these metabolisms overcoming extinction either via parasitism or via a lack of metabolic support. Our results suggest that group selection models may be applicable with fewer physical and chemical constraints than previously thought, and apply much more widely in aqueous environments.
    • References:
      Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006). (PMID: 17158317327974510.1126/science.1133755)
      Higgs, P. G. & Lehman, N. The rna world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7 (2015). (PMID: 2538512910.1038/nrg384125385129)
      Smith, J. M. & Szathmary, E. The Major Transitions in Evolution (Oxford University Press, 1997).
      Tarnita, C. E., Taubes, C. H. & Nowak, M. A. Evolutionary construction by staying together and coming together. J. Theor. Biol. 320, 10–22 (2013). (PMID: 2320638410.1016/j.jtbi.2012.11.02223206384)
      Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408 (2017). (PMID: 10.1038/nphys3984)
      Szathmáry, E. & Demeter, L. Group selection of early replicators and the origin of life. J. Theor. Biol. 128, 463–486 (1987). (PMID: 245177110.1016/S0022-5193(87)80191-12451771)
      Takeuchi, N., Hogeweg, P. & Kaneko, K. The origin of a primordial genome through spontaneous symmetry breaking. Nat. Commun. 8, 250 (2017). (PMID: 28811464555788810.1038/s41467-017-00243-x)
      Mizuuchi, R. & Ichihashi, N. Sustainable replication and coevolution of cooperative rnas in an artificial cell-like system. Nat. Ecol. Evol. 2, 1654 (2018). (PMID: 3015074210.1038/s41559-018-0650-z30150742)
      Smith, J. M. Hypercycles and the origin of life. Nature 280, 445 EP– (1979).
      Bianconi, G., Zhao, K., Chen, I. A. & Nowak, M. A. Selection for replicases in protocells. PLoS Comput. Biol. 9, 1–9 (2013). (PMID: 10.1371/journal.pcbi.1003051)
      Markvoort, A. J., Sinai, S. & Nowak, M. A. Computer simulations of cellular group selection reveal mechanism for sustaining cooperation. J. Theor. Biol. 357, 123–133 (2014). (PMID: 2479913110.1016/j.jtbi.2014.04.02924799131)
      Traulsen, A. & Nowak, M. A. Evolution of cooperation by multilevel selection. Proc. Natl Acad. Sci. USA 103, 10952–10955 (2006). (PMID: 1682957510.1073/pnas.060253010316829575)
      Takeuchi, N. & Hogeweg, P. Multilevel selection in models of prebiotic evolution ii: a direct comparison of compartmentalization and spatial self-organization. PLoS Comput. Biol. 5, 1–17 (2009). 10. (PMID: 10.1371/journal.pcbi.1000542)
      Boerlijst, M. C. & Hogeweg, P. Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D 48, 17–28 (1991). (PMID: 10.1016/0167-2789(91)90049-F)
      Szabó, P., Scheuring, I., Czárán, T. & Szathmáry, E. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420, 340 EP– (2002).
      Adami, C. & Hintze, A. Thermodynamics of evolutionary games. Phys. Rev. E 97, 062136 (2018). (PMID: 3001157310.1103/PhysRevE.97.06213630011573)
      Wilson, D. S. A theory of group selection. Proc. Natl Acad. Sci. USA 72, 143–146 (1975). (PMID: 105449010.1073/pnas.72.1.1431054490)
      Simon, B., Fletcher, J. A. & Doebeli, M. Towards a general theory of group selection. Evolution 67, 1561–11572 (2013). (PMID: 2373075110.1111/j.1558-5646.2012.01835.x23730751)
      Böttcher, M. A. & Nagler, J. Promotion of cooperation by selective group extinction. New J. Phys. 18, 063008 (2016). (PMID: 10.1088/1367-2630/18/6/063008)
      Cooney, D. B. The replicator dynamics for multilevel selection in evolutionary games. J. Math. Biol. 79, 101–154 (2019). (PMID: 3096321110.1007/s00285-019-01352-530963211)
      Bansho, Y., Furubayashi, T., Ichihashi, N. & Yomo, T. Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proc. Natl Acad. Sci. USA 113, 4045–4050 (2016). (PMID: 2703597610.1073/pnas.152440411327035976)
      Vaidya, N. et al. Spontaneous network formation among cooperative rna replicators. Nature 491, 72 (2012). (PMID: 2307585310.1038/nature1154923075853)
      Walker, S. I., Grover, M. A. & Hud, N. V. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution. PLoS ONE 7, e34166 (2012). (PMID: 22493682332090910.1371/journal.pone.0034166)
      Pearce, B. K. D., Pudritz, R. E., Semenov, D. A. & Henning, T. K. Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc. Natl Acad. Sci. USA 114, 11327–11332 (2017). (PMID: 2897392010.1073/pnas.171033911428973920)
      Kinsler, G., Sinai, S., Lee, N. K. & Nowak, M. A. Prebiotic selection for motifs in a model of template-free elongation of polymers within compartments. PLoS ONE 12, e0180208 (2017). (PMID: 28723913551696710.1371/journal.pone.0180208)
      Lancet, D., Zidovetzki, R. & Markovitch, O. Systems protobiology: origin of life in lipid catalytic networks. J. R. Soc. Interface 15, 20180159 (2018). (PMID: 30045888607363410.1098/rsif.2018.0159)
      Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012). (PMID: 2326013410.1016/j.cell.2012.11.05023260134)
      Sinai, S., Olejarz, J., Neagu, I. A. & Nowak, M. A. Primordial sex facilitates the emergence of evolution. J. R. Soc. Interface 15, 20180003 (2018). (PMID: 29491181583274210.1098/rsif.2018.0003)
      Soares, A. R. M., Taniguchi, M., Chandrashaker, V. & Lindsey, J. S. Primordial oil slick and the formation of hydrophobic tetrapyrrole macrocycles. Astrobiology 12, 1055–1068 (2012). (PMID: 23095096349161810.1089/ast.2012.0857)
      Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl Acad. Sci. USA 97, 11864–11868 (2000). (PMID: 1103577510.1073/pnas.200366897)
      Walde, Peter Surfactant assemblies and their various possible roles for the origin(s) of life. Orig. Life Evol. Biosph. 36, 109–150 (2006). (PMID: 1664226610.1007/s11084-005-9004-3)
      Benzi, R. & Nelson, D. R. Fisher equation with turbulence in one dimension. Physica D 238, 2003–2015 (2009). (PMID: 10.1016/j.physd.2009.07.015)
      Perlekar, P., Benzi, R., Nelson, D. R. & Toschi, F. Population dynamics at high reynolds number. Phys. Rev. Lett. 105, 144501 (2010). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.144501 . (PMID: 2123083310.1103/PhysRevLett.105.144501)
      Krieger, M. S., McAvoy, A. & Nowak, M. A. Effects of motion in structured populations. J. R. Soc. Interf. 14, 20170509 (2017). (PMID: 10.1098/rsif.2017.0509)
      Herrerías-Azcué, F., Pérez-Muñuzuri, V. & Galla, T. Stirring does not make populations well mixed. Sci. Rep. 8, 4068 (2018). (PMID: 29511246584042510.1038/s41598-018-22062-w)
      Plummer, A., Benzi, R., Nelson, D. R. & Toschi, F. Fixation probabilities in weakly compressible fluid flows. Proc. Natl. Acad. Sci. USA 116, 373–378 (2018). (PMID: 3058758610.1073/pnas.1812829116)
      Uppal, G. & Vural, D. C. Evolution of specialization in dynamic fluids. J. Evol. Biol. 33, 256–269 (2020). (PMID: 3198970610.1111/jeb.13593)
      Uppal, G. & Vural, D. C. Shearing in flow environment promotes evolution of social behavior in microbial populations. eLife 7, e34862 (2018). (PMID: 29785930600224810.7554/eLife.34862)
      Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992). (PMID: 10.1038/359826a0)
      Nowak, M. A., Bonhoeffer, S. & May, R. M. More spatial games. Int. J. Bifurc. Chaos 04, 33–56 (1994). (PMID: 10.1142/S0218127494000046)
      Elhmadi, D., Provenzale, A. & Babiano, A. Elementary topology of two-dimensional turbulence from a lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257, 533558 (1993).
      Holmes, P. J., Lumley, J. L. & Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems, and Symmetry (Cambridge University Press, 1996).
      Haller, G. & Yuan, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352–370 (2000). (PMID: 10.1016/S0167-2789(00)00142-1)
      Haller, G. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137–162 (2015). (PMID: 10.1146/annurev-fluid-010313-141322)
      Haller, G. An objective definition of a vortex. J. Fluid Mech. 525, 126 (2005). (PMID: 10.1017/S0022112004002526)
      Haller, G. & Beron-Vera, F. J. Coherent lagrangian vortices: the black holes of turbulence. J. Fluid Mech. 731, R4 (2013). (PMID: 10.1017/jfm.2013.391)
      Acheson, D. J. Elementary Fluid Dynamics (Oxford University Press, 1990).
      Marcus, P. S. Vortex dynamics in a shearing zonal flow. J. Fluid Mech. 215, 393430 (1990). (PMID: 10.1017/S0022112090002695)
      Sreenivasan, K. R. Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116, 18175–18183 (2019). (PMID: 3054591610.1073/pnas.180046311530545916)
      Zhong, Y. & Bracco, A. Submesoscale impacts on horizontal and vertical transport in the gulf of mexico. J. Geophys. Res. 118, 5651–5668 (2013). (PMID: 10.1002/jgrc.20402)
      Batchelor, G. K. Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity. J. Fluid Mech. 5, 113133 (1959).
      Sulman, M. H. M., Huntley, H. S., Lipphardt, B. L. & Kirwan, A. D. Leaving flatland: diagnostics for lagrangian coherent structures in three-dimensional flows. Physica D 258, 77–92 (2013). (PMID: 10.1016/j.physd.2013.05.005)
      Crimaldi, J. P., Cadwell, J. R. & Weiss, J. B. Reaction enhancement of isolated scalars by vortex stirring. Phys. Fluids 20, 073605 (2008). (PMID: 10.1063/1.2963139)
      Hassan, A. Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48, 065401 (2007). (PMID: 10.1063/1.2425103)
      Lundgren, T. S. & Pointin, Y. B. Statistical mechanics of two-dimensional vortices. J. Stat. Phys. 17, 323–355 (1977). (PMID: 10.1007/BF01014402)
      Rast, M. P. and Jean-Francois Pinton. Point-vortex model for lagrangian intermittency in turbulence. Phys. Rev. E 79, 046314 (2009). (PMID: 10.1103/PhysRevE.79.046314)
      Baaske, P. et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl Acad. Sci. USA 104, 9346–9351 (2007). (PMID: 1749476710.1073/pnas.060959210417494767)
      Green, M. A., Rowley, C. W. & Haller, G. Detection of lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120 (2007). (PMID: 10.1017/S0022112006003648)
      Leoncini, X. & Zaslavsky, G. M. Jets, stickiness, and anomalous transport. Phys. Rev. E 65, 046216 (2002). (PMID: 10.1103/PhysRevE.65.046216)
      Schuster, P. & Eigen, M. The Hypercycle: A Principle of Natural Self-Organization (Springer, 1979).
      Szostak, N., Wasik, S. & Blazewicz, J. Hypercycle. PLoS Comput. Biol. 12, e1004853 (2016). (PMID: 27054759482441810.1371/journal.pcbi.1004853)
      Grošelj, D., Jenko, F. & Frey, E. How turbulence regulates biodiversity in systems with cyclic competition. Phys. Rev. E 91, 033009 (2015). (PMID: 10.1103/PhysRevE.91.033009)
      Plank, M. J. & Law, R. Spatial point processes and moment dynamics in the life sciences: a parsimonious derivation and some extensions. Bull. Math. Biol. 77, 586–613 (2015). (PMID: 2521696910.1007/s11538-014-0018-825216969)
      Young, W. R. Brownian bugs and superprocesses. In Proc. Hawaiian Winter Workshop (2001). https://www.researchgate.net/profile/William_Young14/publication/2399509_Brownian_Bugs_and_Superprocesses/links/0c96052a9ecabd8d2e000000/Brownian-Bugs-and-Superprocesses.pdf .
      Gokhale, S., Conwill, A., Ranjan, T. & Gore, J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat. Commun. 9, 5273 (2018). (PMID: 30531951628816010.1038/s41467-018-07703-y)
      Pierrehumbert, R. T. Largescale horizontal mixing in planetary atmospheres. Phys. Fluids A 3, 1250–1260 (1991). (PMID: 10.1063/1.858053)
      Shadden, S. C., Lekien, F. & Marsden, J. E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005). (PMID: 10.1016/j.physd.2005.10.007)
      Shadden, S. C., Dabiri, J. O. & Marsden, J. E. Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105 (2006). (PMID: 10.1063/1.2189885)
      Schlueter-Kuck, K. L. & Dabiri, J. O. Coherent structure colouring: identification of coherent structures from sparse data using graph theory. J. Fluid Mech. 811, 468486 (2017). (PMID: 10.1017/jfm.2016.755)
      Kimura, M. Solution of a process of random genetic drift with a continuous model. Proc. Natl Acad. Sci. USA 41, 144–150 (1955). (PMID: 1658963210.1073/pnas.41.3.14416589632)
      McAvoy, A., Fraiman, N., Hauert, C., Wakeley, J. & Nowak, M. A. Public goods games in populations with fluctuating size. Theor. Popul. Biol. 121, 72–84 (2018). (PMID: 2940821910.1016/j.tpb.2018.01.00429408219)
      Banisch, R. & Koltai, P. Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets. Chaos 27, 035804 (2017). (PMID: 2836476310.1063/1.4971788)
      Hadjighasem, A., Karrasch, D., Teramoto, H. & Haller, G. Spectral-clustering approach to Lagrangian vortex detection. Phys. Rev. E 93, 063107 (2016). (PMID: 2741535810.1103/PhysRevE.93.063107)
      Young, W. R., Roberts, A. J. & Stuhne, G. Reproductive pair correlations and the clustering of organisms. Nature 412, 328 EP– (2001). (PMID: 10.1038/35085561)
      Hernández-García, E. & López, C. Clustering, advection, and patterns in a model of population dynamics with neighborhood-dependent rates. Phys. Rev. E 70, 016216 (2004). (PMID: 10.1103/PhysRevE.70.016216)
      Adler, R. Superprocesses and plankton dynamics. In Proc. Aha Huliko’a Hawaiian Winter Workshop, 121–127 (1997).
      Çinlar, E. & Kao, J. S. Birth and death on a flow. In Diffusion Processes and Related Problems in Analysis, Vol. II (eds Pinsky, M. A. & Wihstutz, V.) (Birkhäuser, Boston, MA, 1992).
      Skoulakis, G. & Adler, R. J. Superprocesses over a stochastic flow. Ann. Appl. Probab. 11, 488–543 (2001). (PMID: 10.1214/aoap/1015345302)
      Hallatschek, O. & Nelson, D. R. Gene surfing in expanding populations. Theor. Popul. Biol. 73, 158–170 (2008). (PMID: 1796380710.1016/j.tpb.2007.08.008)
      Penrose, M. Random Geometric Graphs (Oxford University Press, 2003).
      Vestergaard, C. L. & Gnois, M. Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, 1–28 (2015). (PMID: 10.1371/journal.pcbi.1004579)
      Weiss, J. B. & McWilliams, J. C. Nonergodicity of point vortices. Phys. Fluids A 3, 835–844 (1991). (PMID: 10.1063/1.858014)
      Peng, J. & Dabiri, J. O. Transport of inertial particles by Lagrangian coherent structures: application to predatorprey interaction in jellyfish feeding. J. Fluid Mech. 623, 7584 (2009). (PMID: 10.1017/S0022112008005089)
      Wang, S., Sergeev, Y. A., Barenghi, C. F. & Harrison, M. A. Two-particle separation in the point vortex gas model of superfluid turbulence. J. Low Temp. Phys. 149, 65–77 (2007). (PMID: 10.1007/s10909-007-9499-2)
    • Accession Number:
      059QF0KO0R (Water)
    • Publication Date:
      Date Created: 20200506 Date Completed: 20200803 Latest Revision: 20210504
    • Publication Date:
      20240829
    • Accession Number:
      PMC7198613
    • Accession Number:
      10.1038/s41467-020-15780-1
    • Accession Number:
      32366844