Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Physiological Society Country of Publication: United States NLM ID: 0375404 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-1598 (Electronic) Linking ISSN: 00223077 NLM ISO Abbreviation: J Neurophysiol Subsets: MEDLINE
    • Publication Information:
      Publication: Bethesda Md : American Physiological Society
      Original Publication: Washington [etc.]
    • Subject Terms:
    • Abstract:
      Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo -β-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca 2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O 2 ) or CIH. Results show that EAAT blockade with (3 S )-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca 2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH. NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.
    • References:
      J Neurosci Methods. 2006 Jan 15;150(1):47-58. (PMID: 16099514)
      J Neurophysiol. 1986 May;55(5):1076-90. (PMID: 3012009)
      J Physiol. 1994 Jul 1;478 ( Pt 1):55-66. (PMID: 7965835)
      Am J Physiol. 1999 Oct;277(4):H1350-60. (PMID: 10516169)
      J Physiol. 2002 Feb 1;538(Pt 3):773-86. (PMID: 11826164)
      Annu Rev Physiol. 1994;56:93-116. (PMID: 7912060)
      J Physiol. 2017 Sep 1;595(17):6045-6063. (PMID: 28677303)
      Hypertension. 2016 Aug;68(2):436-45. (PMID: 27381902)
      J Neurophysiol. 2002 Nov;88(5):2736-44. (PMID: 12424308)
      Exp Brain Res. 1995;103(1):51-8. (PMID: 7615037)
      J Neurochem. 2010 Jun;113(5):1343-55. (PMID: 20367756)
      APMIS. 2009 Apr;117(4):291-301. (PMID: 19338517)
      J Neurosci. 2016 Oct 5;36(40):10404-10415. (PMID: 27707974)
      J Appl Physiol (1985). 2004 Nov;97(5):2020-5. (PMID: 15258129)
      J Neurosci. 2012 Nov 21;32(47):16736-46. (PMID: 23175827)
      Brain Struct Funct. 2016 Mar;221(2):1113-24. (PMID: 25515313)
      PLoS One. 2014 Jul 11;9(7):e100230. (PMID: 25014412)
      Am J Physiol Regul Integr Comp Physiol. 2012 May 15;302(10):R1219-32. (PMID: 22403798)
      J Neurosci. 2001 Jul 15;21(14):5381-8. (PMID: 11438615)
      Glia. 2000 Oct;32(1):1-14. (PMID: 10975906)
      J Neurosci. 2007 Apr 25;27(17):4663-73. (PMID: 17460079)
      Adv Physiol Educ. 2016 Sep;40(3):283-96. (PMID: 27445275)
      Nat Rev Neurosci. 2010 Apr;11(4):227-38. (PMID: 20300101)
      Nat Methods. 2013 Feb;10(2):162-70. (PMID: 23314171)
      Brain Res. 1999 Jan 23;816(2):638-45. (PMID: 9878890)
      J Neurosci. 2002 Sep 15;22(18):8222-9. (PMID: 12223576)
      Respir Physiol. 1995 Sep;101(3):219-30. (PMID: 8606995)
      Circ J. 2009 Aug;73(8):1363-70. (PMID: 19564701)
      Hypertension. 2013 Jan;61(1):5-13. (PMID: 23172927)
      J Neurophysiol. 2009 May;101(5):2270-8. (PMID: 19244351)
      Front Mol Neurosci. 2019 Jul 09;12:164. (PMID: 31338020)
      Pneumologie. 1991 May;45 Suppl 1:309-11. (PMID: 1866415)
      Adv Exp Med Biol. 2001;499:33-8. (PMID: 11729902)
      Brain Res. 2016 Mar 15;1635:12-26. (PMID: 26779891)
      J Neurophysiol. 2011 Oct;106(4):1822-32. (PMID: 21734104)
      Neuroscience. 2007 May 11;146(2):792-801. (PMID: 17367942)
      Am J Physiol Regul Integr Comp Physiol. 2007 Jun;292(6):R2259-65. (PMID: 17332161)
      Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):105-11. (PMID: 18524694)
      Am J Physiol. 1996 Jun;270(6 Pt 2):R1273-8. (PMID: 8764294)
      Am J Physiol. 1992 Aug;263(2 Pt 2):R368-75. (PMID: 1510176)
      Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R785-93. (PMID: 22204959)
      Am J Physiol Regul Integr Comp Physiol. 2020 Mar 1;318(3):R545-R564. (PMID: 31967862)
      Neuroscience. 2004;127(3):625-35. (PMID: 15283962)
      Am J Respir Crit Care Med. 2014 Jun 15;189(12):1544-50. (PMID: 24673616)
      J Clin Invest. 2014 Apr;124(4):1454-7. (PMID: 24691480)
      Chest. 2006 Sep;130(3):774-9. (PMID: 16963674)
      J Neurophysiol. 2019 Mar 1;121(3):881-892. (PMID: 30601692)
      High Alt Med Biol. 2002 Summer;3(2):195-204. (PMID: 12162863)
      Neurochem Int. 2014 Jul;73:172-80. (PMID: 24418112)
      Sleep. 1993 Dec;16(8 Suppl):S30-3; discussion S33-4. (PMID: 8178019)
      J Physiol. 2004 Oct 15;560(Pt 2):577-86. (PMID: 15319419)
      Respir Physiol. 2000 Jul;121(2-3):209-21. (PMID: 10963776)
      Neuron. 2015 Sep 2;87(5):946-61. (PMID: 26335642)
      Front Neurosci. 2015 Dec 16;9:469. (PMID: 26733784)
      Brain Res. 1992 Feb 14;572(1-2):108-16. (PMID: 1611506)
      Nat Protoc. 2012 Dec;7(12):2171-9. (PMID: 23196973)
      Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
      Glia. 2011 Apr;59(4):655-63. (PMID: 21294164)
      Eur Respir J. 2013 Jun;41(6):1439-51. (PMID: 23258782)
      Amino Acids. 2012 Jan;42(1):181-97. (PMID: 21399919)
      Physiol Rev. 1994 Apr;74(2):323-64. (PMID: 8171117)
      J Neurosci. 2007 Apr 11;27(15):3946-55. (PMID: 17428968)
      J Physiol. 2017 Jul 15;595(14):4647-4661. (PMID: 28378360)
      J Physiol. 2006 Dec 1;577(Pt 2):705-16. (PMID: 16973705)
      Neuroscience. 2020 Mar 15;430:131-140. (PMID: 32032667)
      Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R131-9. (PMID: 21543638)
      Trends Neurosci. 2009 Aug;32(8):421-31. (PMID: 19615761)
      JACC Basic Transl Sci. 2016 Aug 29;1(5):313-324. (PMID: 27766316)
      Cleve Clin J Med. 2007 Feb;74 Suppl 1:S34-6. (PMID: 17455541)
      J Physiol. 2001 Feb 15;531(Pt 1):165-70. (PMID: 11179400)
      J Neurophysiol. 2016 Mar;115(3):1691-702. (PMID: 26719090)
      J Neurophysiol. 2001 May;85(5):2213-23. (PMID: 11353036)
      Trends Neurosci. 1998 Apr;21(4):137-45. (PMID: 9554720)
      J Cardiovasc Med (Hagerstown). 2017 Jul;18(7):490-500. (PMID: 25000252)
      Exp Physiol. 2006 Nov;91(6):1025-31. (PMID: 16959820)
    • Grant Information:
      R01 DK108765 United States DK NIDDK NIH HHS; R01 NS060664 United States NS NINDS NIH HHS; DK108765 International HHS | National Institutes of Health (NIH); R01 HL128454 United States HL NHLBI NIH HHS; HL128454 International HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
    • Contributed Indexing:
      Keywords: astrocytes; chemoreflex; glutamate signaling
    • Accession Number:
      0 (Glutamate Plasma Membrane Transport Proteins)
      3KX376GY7L (Glutamic Acid)
    • Publication Date:
      Date Created: 20200430 Date Completed: 20210719 Latest Revision: 20230115
    • Publication Date:
      20230115
    • Accession Number:
      PMC7311725
    • Accession Number:
      10.1152/jn.00766.2019
    • Accession Number:
      32347148