Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, c2005-
    • Subject Terms:
    • Abstract:
      Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for its virulence. The chaperone ClpB, a member of the Hsp100/Clp family, is involved in Francisella T6SS disassembly and type VI secretion (T6S) is impaired in its absence. We asked if the role of ClpB for T6S was related to its prototypical role for the disaggregation activity. The latter is dependent on its interaction with the DnaK/Hsp70 chaperone system. Key residues of the ClpB-DnaK interaction were identified by molecular dynamic simulation and verified by targeted mutagenesis. Using such targeted mutants, it was found that the F. novicida ClpB-DnaK interaction was dispensable for T6S, intracellular replication, and virulence in a mouse model, although essential for handling of heat shock. Moreover, by mutagenesis of key amino acids of the Walker A, Walker B, and Arginine finger motifs of each of the two Nucleotide-Binding Domains, their critical roles for heat shock, T6S, intracellular replication, and virulence were identified. In contrast, the N-terminus was dispensable for heat shock, but required for T6S, intracellular replication, and virulence. Complementation of the ΔclpB mutant with a chimeric F. novicida ClpB expressing the N-terminal of Escherichia coli, led to reconstitution of the wild-type phenotype. Collectively, the data demonstrate that the ClpB-DnaK interaction does not contribute to T6S, whereas the N-terminal and NBD domains displayed critical roles for T6S and virulence.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50. (PMID: 27166375)
      Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6872-81. (PMID: 26621746)
      Science. 2012 Aug 17;337(6096):815. (PMID: 22767897)
      Infect Immun. 2008 Nov;76(11):5082-92. (PMID: 18779336)
      Nat Commun. 2017 Jun 16;8:15853. (PMID: 28621333)
      Infect Immun. 2011 Sep;79(9):3683-96. (PMID: 21690239)
      PLoS One. 2009;4(5):e5463. (PMID: 19424499)
      PLoS One. 2008 Aug 13;3(8):e2955. (PMID: 18698408)
      Microb Pathog. 2003 May;34(5):239-48. (PMID: 12732472)
      Nat Struct Biol. 2001 Mar;8(3):230-3. (PMID: 11224567)
      PLoS Pathog. 2009 Jan;5(1):e1000284. (PMID: 19158962)
      J Biol Chem. 2014 Nov 21;289(47):33032-43. (PMID: 25305017)
      Proc Natl Acad Sci U S A. 2009 May 26;106(21):8471-6. (PMID: 19439666)
      J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
      J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
      J Biol Chem. 2003 Aug 29;278(35):32608-17. (PMID: 12805357)
      PLoS One. 2012;7(4):e34639. (PMID: 22514651)
      Microbiology. 2010 Nov;156(Pt 11):3445-3455. (PMID: 20688819)
      Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6915-20. (PMID: 21474779)
      J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. (PMID: 26574453)
      Nat Struct Mol Biol. 2012 Dec;19(12):1338-46. (PMID: 23160353)
      Vaccine. 2010 Feb 17;28(7):1824-31. (PMID: 20018266)
      Cell Rep. 2019 Jun 18;27(12):3433-3446.e4. (PMID: 31216466)
      Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. (PMID: 21593126)
      Appl Microbiol. 1965 Mar;13:232-5. (PMID: 14325885)
      EMBO J. 2009 Feb 18;28(4):315-25. (PMID: 19131969)
      Front Microbiol. 2013 Feb 11;4:16. (PMID: 23403609)
      Trends Biochem Sci. 1996 Aug;21(8):289-96. (PMID: 8772382)
      J Biol Chem. 2011 Aug 26;286(34):30010-21. (PMID: 21733841)
      Nat Struct Mol Biol. 2012 Dec;19(12):1347-55. (PMID: 23160352)
      Structure. 2018 Feb 6;26(2):329-336.e3. (PMID: 29307484)
      J Biol Chem. 2003 May 16;278(20):17615-24. (PMID: 12624113)
      J Biol Chem. 2005 Oct 14;280(41):34940-5. (PMID: 16076845)
      Biol Chem. 2005 Nov;386(11):1115-27. (PMID: 16307477)
      J Biol Chem. 2005 Jul 1;280(26):24562-7. (PMID: 15809298)
      J Mol Biol. 2004 Feb 6;336(1):275-85. (PMID: 14741222)
      J Mol Biol. 2016 Feb 22;428(4):720-725. (PMID: 26410586)
      Infect Immun. 2008 Aug;76(8):3502-10. (PMID: 18474647)
      Front Cell Infect Microbiol. 2014 Mar 13;4:35. (PMID: 24660164)
      Science. 2013 Mar 1;339(6123):1080-3. (PMID: 23393091)
      J Bacteriol. 2004 Feb;186(4):1165-74. (PMID: 14762012)
      PLoS One. 2012;7(8):e42842. (PMID: 22952616)
      Sci Rep. 2018 Jul 27;8(1):11324. (PMID: 30054549)
      Cell. 2015 Feb 26;160(5):940-951. (PMID: 25723168)
      Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11138-44. (PMID: 17545305)
      PLoS Pathog. 2016 Sep 07;12(9):e1005821. (PMID: 27602570)
      Nat Microbiol. 2017 Nov;2(11):1507-1512. (PMID: 28947741)
      Virulence. 2017 Aug 18;8(6):821-847. (PMID: 27830989)
      Nature. 2012 Feb 26;483(7388):182-6. (PMID: 22367545)
      Biochim Biophys Acta. 2012 Jan;1823(1):29-39. (PMID: 21843558)
      Infect Immun. 2007 Mar;75(3):1303-9. (PMID: 17210667)
      Mol Microbiol. 2009 Dec;74(6):1459-70. (PMID: 20054881)
      Mol Cell. 2007 Jan 26;25(2):247-60. (PMID: 17244532)
      Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. (PMID: 29788355)
      Brief Bioinform. 2019 Jul 19;20(4):1160-1166. (PMID: 28968734)
      J Bacteriol. 2008 Feb;190(4):1436-46. (PMID: 18065546)
      Infect Immun. 2013 Nov;81(11):4026-40. (PMID: 23959721)
      BMC Bioinformatics. 2015 Apr 16;16:116. (PMID: 25885774)
      J Mol Biol. 2015 Jan 30;427(2):312-27. (PMID: 25451597)
      BMC Biol. 2014 May 29;12:41. (PMID: 24885329)
      Mol Cell Proteomics. 2019 Dec;18(12):2418-2432. (PMID: 31578219)
      J Mol Biol. 2008 Apr 18;378(1):178-90. (PMID: 18343405)
      Front Microbiol. 2010 Dec 21;1:136. (PMID: 21687753)
      J Biol Chem. 2014 Nov 21;289(47):32965-76. (PMID: 25253689)
    • Accession Number:
      0 (Bacterial Proteins)
      0 (Escherichia coli Proteins)
      0 (HSP70 Heat-Shock Proteins)
      0 (Heat-Shock Proteins)
      0 (Molecular Chaperones)
      0 (Type VI Secretion Systems)
      EC 3.4.21.92 (Endopeptidase Clp)
      EC 3.6.1.- (dnaK protein, E coli)
      EC 3.6.1.3 (ClpB protein, E coli)
    • Publication Date:
      Date Created: 20200411 Date Completed: 20200804 Latest Revision: 20200804
    • Publication Date:
      20231215
    • Accession Number:
      PMC7182274
    • Accession Number:
      10.1371/journal.ppat.1008466
    • Accession Number:
      32275693