An engineered PET depolymerase to break down and recycle plastic bottles.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150-200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging 3 . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties 4 . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse 5 . Several PET hydrolase enzymes have been reported, but show limited productivity 6,7 . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme 8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme 10 ) and related improved variants 11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
    • References:
      PlasticsEurope. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEurope https://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (2019).
      Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). (PMID: 10.1126/sciadv.1700782)
      PET polymer: chemical economics handbook. IHS Markit https://ihsmarkit.com/products/pet-polymer-chemical-economics-handbook.html (2018).
      Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017). (PMID: 10.1016/j.wasman.2017.07.044)
      Marten, E., Müller, R.-J. & Deckwer, W.-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters. Polym. Degrad. Stabil. 88, 371–381 (2005). (PMID: 10.1016/j.polymdegradstab.2004.12.001)
      Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10, 1308–1322 (2017). (PMID: 10.1111/1751-7915.12710)
      Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103, 4253–4268 (2019). (PMID: 10.1007/s00253-019-09717-y)
      Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016). (PMID: 10.1126/science.aad6359)
      Bornscheuer, U. T. Feeding on plastic. Science 351, 1154–1155 (2016). (PMID: 10.1126/science.aaf2853)
      Palm, G. J. et al. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun. 10, 1717 (2019). (PMID: 10.1038/s41467-019-09326-3)
      Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017). (PMID: 10.1038/s41467-017-02255-z)
      Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018). (PMID: 10.1038/s41467-018-02881-1)
      Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018). (PMID: 10.1073/pnas.1718804115)
      Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. 9, 4089–4105 (2019). (PMID: 10.1021/acscatal.8b05171)
      Brueckner, T., Eberl, A., Heumann, S., Rabe, M. & Guebitz, G. M. Enzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabrics. J. Polym. Sci. A 46, 6435–6443 (2008). (PMID: 10.1002/pola.22952)
      Vertommen, M. A., Nierstrasz, V. A., van der Veer, M. & Warmoeskerken, M. M. Enzymatic surface modification of poly(ethylene terephthalate). J. Biotechnol. 120, 376–386 (2005). (PMID: 10.1016/j.jbiotec.2005.06.015)
      Wei, R. et al. Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Adv. Sci. 6, 1900491 (2019). (PMID: 10.1002/advs.201900491)
      Ronkvist, A. S. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42, 5128–5138 (2009). (PMID: 10.1021/ma9005318)
      Zimmermann, W. & Billig, S. Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv. Biochem. Eng. Biotechnol. 125, 97–120 (2010).
      Kitadokoro, K. et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym. Degrad. Stabil. 97, 771–775 (2012). (PMID: 10.1016/j.polymdegradstab.2012.02.003)
      Chen, S., Su, L., Chen, J. & Wu, J. Cutinase: characteristics, preparation, and application. Biotechnol. Adv. 31, 1754–1767 (2013). (PMID: 10.1016/j.biotechadv.2013.09.005)
      Wei, R., Oeser, T. & Zimmermann, W. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Adv. Appl. Microbiol. 89, 267–305 (2014). (PMID: 10.1016/B978-0-12-800259-9.00007-X)
      Then, J. et al. Ca 2+ and Mg 2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol. J. 10, 592–598 (2015). (PMID: 10.1002/biot.201400620)
      Kawabata, T., Oda, M. & Kawai, F. Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate. J. Biosci. Bioeng. 124, 28–35 (2017). (PMID: 10.1016/j.jbiosc.2017.02.007)
      Sulaiman, S., You, D. J., Kanaya, E., Koga, Y. & Kanaya, S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53, 1858–1869 (2014). (PMID: 10.1021/bi401561p)
      Then, J. et al. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6, 425–432 (2016). (PMID: 10.1002/2211-5463.12053)
      Sowdhamini, R. et al. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng. 3, 95–103 (1989). (PMID: 10.1093/protein/3.2.95)
      Awaja, F. & Pavel, D. Recycling of PET. Eur. Polym. J. 41, 1453–1477 (2005). (PMID: 10.1016/j.eurpolymj.2005.02.005)
      Barboza Neto, E. S., Coelho, L. A. F., Forte, M. M. C., Amico, S. C. & Ferreira, C. A. Processing of a LLDPE/HDPE pressure vessel liner by rotomolding. Mater. Res. 17, 236–241 (2014). (PMID: 10.1590/S1516-14392013005000168)
      Fullbrook, P. D. in Glucose Syrups, Science and Technology (eds Dziedzic, S. Z. & Kearsley, M. W.) 65–115 (Elsevier, 1984).
      Gusakov, A. V. et al. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97, 1028–1038 (2007). (PMID: 10.1002/bit.21329)
      Liu, G., Zhang, J. & Bao, J. Cost evaluation of cellulose enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 39, 133–140 (2016). (PMID: 10.1007/s00449-015-1497-1)
      Mohammad-Khah, A. & Ansari, R. Activated charcoal: preparation, characterization and applications: a review article. Int. J. Chemtech Res. 1, 859–864 (2014).
      Meyer, D. H. Process for purifying terephthalic acid. US patent 3,288,849 (1966).
      Merchant Research and Consulting. Sodium sulfate: 2020 world market outlook and forecast up to 2029. https://mcgroup.co.uk/researches/sodium-sulphate (2019).
      Müller, R. J., Schrader, H., Profe, J., Dresler, K. & Deckwer, W.-D. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Commun. 26, 1400–1405 (2005). (PMID: 10.1002/marc.200500410)
      Sulaiman, S. et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomics approach. Appl. Environ. Microbiol. 78, 1556–1562 (2012). (PMID: 10.1128/AEM.06725-11)
    • Accession Number:
      0 (Disulfides)
      0 (Phthalic Acids)
      0 (Plastics)
      0 (Polyethylene Terephthalates)
      6S7NKZ40BQ (terephthalic acid)
      EC 3.- (Hydrolases)
      EC 3.1.1.- (Carboxylic Ester Hydrolases)
      EC 3.1.1.- (cutinase)
    • Subject Terms:
      Ideonella sakaiensis; Thermobifida fusca
    • Publication Date:
      Date Created: 20200410 Date Completed: 20200603 Latest Revision: 20210211
    • Publication Date:
      20231215
    • Accession Number:
      10.1038/s41586-020-2149-4
    • Accession Number:
      32269349