Nucleosome positioning stability is a modulator of germline mutation rate variation across the human genome.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Li C;Li C;Li C; Luscombe NM; Luscombe NM; Luscombe NM; Luscombe NM
  • Source:
    Nature communications [Nat Commun] 2020 Mar 13; Vol. 11 (1), pp. 1363. Date of Electronic Publication: 2020 Mar 13.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Nucleosome organization has been suggested to affect local mutation rates in the genome. However, the lack of de novo mutation and high-resolution nucleosome data has limited the investigation of this hypothesis. Additionally, analyses using indirect mutation rate measurements have yielded contradictory and potentially confounding results. Here, we combine data on >300,000 human de novo mutations with high-resolution nucleosome maps and find substantially elevated mutation rates around translationally stable ('strong') nucleosomes. We show that the mutational mechanisms affected by strong nucleosomes are low-fidelity replication, insufficient mismatch repair and increased double-strand breaks. Strong nucleosomes preferentially locate within young SINE/LINE transposons, suggesting that when subject to increased mutation rates, transposons are then more rapidly inactivated. Depletion of strong nucleosomes in older transposons suggests frequent positioning changes during evolution. The findings have important implications for human genetics and genome evolution.
    • References:
      Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012). (PMID: 2280570910.1038/nrg3241)
      Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016). (PMID: 27894357512504410.1186/s13059-016-1110-1)
      Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12, 756–766 (2011). (PMID: 2196903810.1038/nrg3098)
      Segurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation rate variation in the human germline. Annu. Rev. Genom. Hum. Genet. 15, 47–70 (2014). (PMID: 10.1146/annurev-genom-031714-125740)
      Michaelson, J. J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012). (PMID: 23260136371264110.1016/j.cell.2012.11.019)
      Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 41, 393–395 (2009). (PMID: 19287383291410110.1038/ng.363)
      Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822–826 (2015). (PMID: 25985141448556410.1038/ng.3292)
      Arbeithuber, B., Betancourt, A. J., Ebner, T. & Tiemann-Boege, I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc. Natl Acad. Sci. USA 112, 2109–2114 (2015). (PMID: 2564645310.1073/pnas.1416622112)
      Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 363, eaau1043 (2019). (PMID: 3067934010.1126/science.aau1043)
      Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & Lopez-Bigas, N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016). (PMID: 2707510110.1038/nature17661)
      Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012). (PMID: 2282025210.1038/nature11273)
      Terekhanova, N. V., Seplyarskiy, V. B., Soldatov, R. A. & Bazykin, G. A. Evolution of local mutation rate and its determinants. Mol. Biol. Evol. 34, 1100–1109 (2017). (PMID: 281380765850301)
      Smith, T. C. A., Arndt, P. F. & Eyre-Walker, A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans. PLoS Genet. 14, e1007254 (2018). (PMID: 29590096589106210.1371/journal.pgen.1007254)
      Reijns, M. A. M. et al. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518, 502–506 (2015). (PMID: 25624100437416410.1038/nature14183)
      Harris, K. & Nielsen, R. Error-prone polymerase activity causes multinucleotide mutations in humans. Genome Res. 24, 1445–1454 (2014). (PMID: 25079859415875210.1101/gr.170696.113)
      Seplyarskiy, V. B., Andrianova, M. A. & Bazykin, G. A. APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Res. 27, 175–184 (2017). (PMID: 27940951528722410.1101/gr.210336.116)
      Lujan, S. A. et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 24, 1751–1764 (2014). (PMID: 25217194421691710.1101/gr.178335.114)
      Seplyarskiy, V. B. et al. Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nat. Genet. 51, 36–41 (2019). (PMID: 3051024010.1038/s41588-018-0285-7)
      Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81–84 (2015). (PMID: 25707793442554610.1038/nature14173)
      Frigola, J. et al. Reduced mutation rate in exons due to differential mismatch repair. Nat. Genet. 49, 1684–1692 (2017). (PMID: 29106418571221910.1038/ng.3991)
      Perera, D. et al. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature 532, 259–263 (2016). (PMID: 2707510010.1038/nature17437)
      Makova, K. D. & Hardison, R. C. The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223 (2015). (PMID: 25732611450004910.1038/nrg3890)
      Sasaki, S. et al. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009). (PMID: 1907431310.1126/science.1163183)
      Tolstorukov, M. Y., Volfovsky, N., Stephens, R. M. & Park, P. J. Impact of chromatin structure on sequence variability in the human genome. Nat. Struct. Mol. Biol. 18, 510–515 (2011). (PMID: 21399641318832110.1038/nsmb.2012)
      Chen, X. et al. Nucleosomes suppress spontaneous mutations base-specifically in eukaryotes. Science 335, 1235–1238 (2012). (PMID: 2240339210.1126/science.1217580)
      Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018). (PMID: 3038844410.1016/j.cell.2018.10.004)
      Yuen, R. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017). (PMID: 550170110.1038/nn.45245501701)
      Jonsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017). (PMID: 2895996310.1038/nature24018)
      Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722.e12 (2017). (PMID: 28965761567971510.1016/j.cell.2017.08.047)
      Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). (PMID: 5018207501820710.1038/nature19057)
      Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans. Nat. Commun. 9, 3753 (2018). (PMID: 30218074613870010.1038/s41467-018-05936-5)
      Gaffney, D. J. et al. Controls of nucleosome positioning in the human genome. PLoS Genet. 8, e1003036 (2012). (PMID: 23166509349925110.1371/journal.pgen.1003036)
      Winter, D. R., Song, L., Mukherjee, S., Furey, T. S. & Crawford, G. E. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types. Genome Res. 23, 1118–1129 (2013). (PMID: 23657885369850510.1101/gr.150482.112)
      West, J. A. et al. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat. Commun. 5, 4719 (2014). (PMID: 25158628421753010.1038/ncomms5719)
      Harpak, A., Bhaskar, A. & Pritchard, J. K. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. PLoS Genet. 12, e1006489 (2016). (PMID: 27977673515794910.1371/journal.pgen.1006489)
      Lee, H. & Schatz, M. C. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score. Bioinformatics 28, 2097–2105 (2012). (PMID: 22668792341338310.1093/bioinformatics/bts330)
      Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). (PMID: 23945592377639010.1038/nature12477)
      Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018). (PMID: 29695279592231610.1186/s13073-018-0539-0)
      Roy, S. et al. p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLθ pathways. eLife 7, e31723 (2018). (PMID: 29334356583241210.7554/eLife.31723)
      ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). (PMID: 10.1038/s41586-020-1969-6)
      Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015). (PMID: 2564263110.1038/ng.3202)
      Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016). (PMID: 26751768472989910.1038/ncomms10208)
      Tubbs, A. et al. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell 174, 1127–1142.e19 (2018). (PMID: 30078706659173510.1016/j.cell.2018.07.011)
      Rodgers, K. & McVey, M. Error-prone repair of DNA double-strand breaks. J. Cell Physiol. 231, 15–24 (2016). (PMID: 26033759458635810.1002/jcp.25053)
      Englander, E. W. & Howard, B. H. Nucleosome positioning by human Alu elements in chromatin. J. Biol. Chem. 270, 10091–10096 (1995). (PMID: 773031310.1074/jbc.270.17.10091)
      Englander, E. W., Wolffe, A. P. & Howard, B. H. Nucleosome interactions with a human Alu element. Transcriptional repression and effects of template methylation. J. Biol. Chem. 268, 19565–19573 (1993). (PMID: 8366099)
      Salih, F., Salih, B., Kogan, S. & Trifonov, E. N. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element. J. Biomol. Struct. Dyn. 26, 9–16 (2008). (PMID: 1853372210.1080/07391102.2008.10507219)
      Tanaka, Y., Yamashita, R., Suzuki, Y. & Nakai, K. Effects of Alu elements on global nucleosome positioning in the human genome. BMC Genom. 11, 309 (2010). (PMID: 10.1186/1471-2164-11-309)
      Tolstorukov, M. Y., Choudhary, V., Olson, W. K., Zhurkin, V. B. & Park, P. J. nuScore: a web-interface for nucleosome positioning predictions. Bioinformatics 24, 1456–1458 (2008). (PMID: 18445607380712410.1093/bioinformatics/btn212)
      Smerdon, M. J. DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol. 3, 422–428 (1991). (PMID: 189265310.1016/0955-0674(91)90069-B)
      Li, F., Tian, L., Gu, L. & Li, G. M. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J. Biol. Chem. 284, 33056–33061 (2009). (PMID: 19808662278514610.1074/jbc.M109.049874)
      Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet 8, 272–285 (2007). (PMID: 1736397610.1038/nrg2072)
      Prendergast, J. G. & Semple, C. A. Widespread signatures of recent selection linked to nucleosome positioning in the human lineage. Genome Res. 21, 1777–1787 (2011). (PMID: 21903742320556310.1101/gr.122275.111)
      Warnecke, T., Becker, E. A., Facciotti, M. T., Nislow, C. & Lehner, B. Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution. PLoS Comput. Biol. 9, e1003373 (2013). (PMID: 24278010383671010.1371/journal.pcbi.1003373)
      Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 45, D804–D811 (2017). (PMID: 2790788910.1093/nar/gkw865)
      Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50, 727–736 (2018). (PMID: 29700473596172310.1038/s41588-018-0107-y)
      Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98, 58–74 (2016). (PMID: 2674930810.1016/j.ajhg.2015.11.023)
      Yuen, R. K. et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom. Med. 1, 160271–1602710 (2016). (PMID: 2752510710.1038/npjgenmed.2016.27)
      Genome of the Netherlands C. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014). (PMID: 10.1038/ng.3021)
      Heger, A., Webber, C., Goodson, M., Ponting, C. P. & Lunter, G. GAT: a simulation framework for testing the association of genomic intervals. Bioinformatics 29, 2046–2048 (2013). (PMID: 23782611372252810.1093/bioinformatics/btt343)
      Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014). (PMID: 24799436408613410.1093/nar/gku365)
      Guo, J. et al. Chromatin and single-cell RNA-Seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21, 533–546.e6 (2017). (PMID: 28985528583272010.1016/j.stem.2017.09.003)
      ENCODE Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). (PMID: 10.1038/nature11247)
      International HapMap Consortium, Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007). (PMID: 10.1038/nature06258)
      Gelman, A., Jakulin, A., Pittau, M. G. & Su, Y.-S. A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat. 2, 1360–1383 (2008). (PMID: 10.1214/08-AOAS191)
      Tempel, S. Using and understanding RepeatMasker. Methods Mol. Biol. 859, 29–51 (2012). (PMID: 2236786410.1007/978-1-61779-603-6_2)
      Giordano, J. et al. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput. Biol. 3, e137 (2007). (PMID: 17630829191437410.1371/journal.pcbi.0030137)
    • Grant Information:
      FC001110 United Kingdom CRUK_ Cancer Research UK; FC001110 United Kingdom MRC_ Medical Research Council; FC001110 United Kingdom WT_ Wellcome Trust
    • Accession Number:
      0 (DNA Transposable Elements)
      0 (Nucleosomes)
      EC 2.7.7.7 (DNA-Directed DNA Polymerase)
    • Publication Date:
      Date Created: 20200315 Date Completed: 20200713 Latest Revision: 20210313
    • Publication Date:
      20231215
    • Accession Number:
      PMC7070026
    • Accession Number:
      10.1038/s41467-020-15185-0
    • Accession Number:
      32170069