Observation of the Kondo screening cloud.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Abstract:
      When a magnetic impurity exists in a metal, conduction electrons form a spin cloud that screens the impurity spin. This basic phenomenon is called the Kondo effect 1,2 . Unlike electric-charge screening, the spin-screening cloud 3-6 occurs quantum coherently, forming spin-singlet entanglement with the impurity. Although the spins interact locally around the impurity, the Kondo cloud can theoretically spread out over several micrometres. The cloud has not so far been detected, and so its physical existence-a fundamental aspect of the Kondo effect-remains controversial 7,8 . Here we present experimental evidence of a Kondo cloud extending over a length of micrometres, comparable to the theoretical length ξ K . In our device, a Kondo impurity is formed in a quantum dot 2,9-11 , coupling on one side to a quasi-one-dimensional channel 12 that houses a Fabry-Pérot interferometer of various gate-defined lengths L exceeding one micrometre. When we sweep a voltage on the interferometer end gate-separated by L from the quantum dot-to induce Fabry-Pérot oscillations in conductance we observe oscillations in the measured Kondo temperature T K , which is a signature of the Kondo cloud at distance L. When L is less than ξ K the T K oscillation amplitude becomes larger as L becomes smaller, obeying a scaling function of a single parameter L/ξ K , whereas when L is greater than ξ K the oscillation is much weaker. Our results reveal that ξ K is the only length parameter associated with the Kondo effect, and that the cloud lies mostly within a length of ξ K . Our experimental method offers a way of detecting the spatial distribution of exotic non-Fermi liquids formed by multiple magnetic impurities or multiple screening channels 13-16 and of studying spin-correlated systems.
    • References:
      Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1993).
      Glazman, L. I. & Pustilnik, M. Low-temperature transport through a quantum dot. In Nanophysics: Coherence and Transport (ed. Bouchiat, H. et al.) 427–478 (Elsevier, 2005).
      Affleck, I. The Kondo screening cloud: what it is and how to observe it. In Perspectives of Mesoscopic Physics (eds Aharony, A. & Entin-Wohlman, O.) Ch. 1, 1–44 (World Scientific Publishing, 2010).
      Grüner, G. & Zawadowski, A. Magnetic impurities in non-magnetic metals. Rep. Prog. Phys. 37, 1497–1583 (1974).
      Gubernatis, J. E., Hirsch, J. E. & Scalapino, D. J. Spin and charge correlations around an Anderson magnetic impurity. Phys. Rev. B 35, 8478 (1987).
      Barzykin, V. & Affleck, I. The Kondo screening cloud: what can we learn from perturbation theory? Phys. Rev. Lett. 76, 4959 (1996). (PMID: 10061423)
      Boyce, J. P. & Slichter, C. P. Conduction-electron spin density around Fe impurities in Cu above and below T K . Phys. Rev. Lett. 32, 61 (1974).
      Sørensen, E. S. & Affleck, I. Scaling theory of the Kondo screening cloud. Phys. Rev. B 53, 9153 (1996).
      Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D. & Meirav, U. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).
      Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998). (PMID: 9677192)
      Kouwenhoven, L. P. & Glazman, L. I. Revival of the Kondo effect. Phys. World 14, 33–38 (2001).
      Park, J., Lee, S.-S. B., Oreg, Y. & Sim, H.-S. How to directly measure a Kondo cloud’s length. Phys. Rev. Lett. 110, 246603 (2013). (PMID: 25165950)
      Cox, D. L. & Jarrell, M. The two-channel Kondo route to non-Fermi-liquid metals. J. Phys. Condens. Matter 8, 9825–9853 (1996).
      Affleck, I. Non-Fermi liquid behavior in Kondo models. J. Phys. Soc. Jpn 74, 59–66 (2005).
      Potok, R. M., Rau, I. G., Shtrikman, H., Oreg, Y. & Goldhaber-Gordon, D. Observation of the two-channel Kondo effect. Nature 446, 167–171 (2007). (PMID: 17344849)
      Iftikhar, Z. et al. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states. Nature 526, 233–236 (2015). (PMID: 26450056)
      Prüser, H. et al. Long-range Kondo signature of a single magnetic impurity. Nat. Phys. 7, 203–206 (2011).
      Borda, L. Kondo screening cloud in a one-dimensional wire: numerical renormalization group study. Phys. Rev. B 75, 041307 (2007).
      Thimm, W. B., Kroha, J. & von Delft, J. Kondo box: a magnetic impurity in an ultrasmall metallic grain. Phys. Rev. Lett. 82, 2143 (1999).
      Simon, P. & Affleck, I. Finite-size effects in conductance measurements on quantum dots. Phys. Rev. Lett. 89, 206602 (2002). (PMID: 12443494)
      Bomze, Yu. et al. Two-stage Kondo effect and Kondo-box level spectroscopy in a carbon nanotube. Phys. Rev. B 82, 161411 (2010).
      Holzner, A., McCulloch, I. P., Schollwöck, U., von Delft, J. & Heidrich-Meisner, F. Kondo screening cloud in the single-impurity Anderson model: a density matrix renormalization group study. Phys. Rev. B 80, 205114 (2009).
      Büsser, C. A. et al. Numerical analysis of the spatial range of the Kondo effect. Phys. Rev. B 81, 045111 (2010).
      Mitchell, A. K., Becker, M. & Bulla, R. Real-space renormalization group flow in quantum impurity systems: local moment formation and the Kondo screening cloud. Phys. Rev. B 84, 115120 (2011).
      Lee, S.-S. B., Park, J. & Sim, H.-S. Macroscopic quantum entanglement of a Kondo cloud at finite temperature. Phys. Rev. Lett. 114, 057203 (2015). (PMID: 25699466)
      Takada, S. et al. Transmission phase in the Kondo regime revealed in a two-path interferometer. Phys. Rev. Lett. 113, 126601 (2014). (PMID: 25279636)
      van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000). (PMID: 11000108)
      van Houten, H. et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B 39, 8556 (1989).
      Kouwenhoven, L. P. et al. Electron transport in quantum dots. In Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) NATO Advanced Study Institutes Series E, Vol. 345, 105–214 (Kluwer Academic, 1997).
      Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225 (1998).
      Noziéres, P. A Fermi-liquid description of the Kondo problem at low temperatures. J. Low Temp. Phys. 17, 31–42 (1974).
      Yoo, G., Lee, S.-S. B. & Sim, H.-S. Detecting Kondo entanglement by electron conductance. Phys. Rev. Lett. 120, 146801 (2018). (PMID: 29694152)
    • Publication Date:
      Date Created: 20200313 Date Completed: 20200320 Latest Revision: 20210115
    • Publication Date:
      20231215
    • Accession Number:
      10.1038/s41586-020-2058-6
    • Accession Number:
      32161385