Exploring the role of the Ser9Gly (rs6280) Dopamine D3 receptor polymorphism in nicotine reinforcement and cue-elicited craving.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Preclinical studies show that the dopamine D3 receptor (D3R) is involved in the reinstatement of drug seeking and motivation for drugs of abuse. A D3R gene variant, Ser9Gly (rs6280) has been linked to nicotine dependence, yet the mechanisms underlying its involvement in nicotine dependence is unclear. This study investigated the relationship between the Ser9Gly variant and measures of both nicotine reinforcement and cue-elicited craving. Phenotypes of smoking behaviors were assessed in genetically grouped (Glycine vs. No Glycine carriers) current smokers (n = 104, ≥ 10 cigarettes per day). Laboratory measures included a forced choice session (to measure reinforcement of nicotine containing vs. denicotinized cigarettes), and a cue-reactivity session (to measure smoking cues vs. neutral cues elicited craving). The forced choice procedure revealed that subjective ratings were significantly higher in response to nicotinized compared to denicotinized cigarettes; however the Ser9Gly variant did not influence this effect. By comparison, smoking cues elicited greater craving over time compared to neutral cues, and Glycine carriers of the Ser9Gly D3R variant seem to experience a significant blunted cue-elicited craving effect. Results support D3R involvement in nicotine cue reactivity. However, more research is needed to reveal how this gene variant modulates various aspects of nicotine dependence.
    • References:
      Warren, G. W., Alberg, A. J., Kraft, A. S. & Cummings, K. M. The 2014 Surgeon General’s report: “The health consequences of smoking–50 years of progress”: a paradigm shift in cancer care. Cancer 120, 1914–1916, https://doi.org/10.1002/cncr.28695 (2014). (PMID: 10.1002/cncr.286952468761524687615)
      Babb, S., Malarcher, A., Schauer, G., Asman, K. & Jamal, A. Quitting Smoking Among Adults – United States, 2000–2015. MMWR. Morbidity and mortality weekly report 65, 1457–1464, https://doi.org/10.15585/mmwr.mm6552a1 (2017). (PMID: 10.15585/mmwr.mm6552a12805600728056007)
      Bierut, L. J., Johnson, E. O. & Saccone, N. L. A glimpse into the future - Personalized medicine for smoking cessation. Neuropharmacology 76 Pt B, 592–599, https://doi.org/10.1016/j.neuropharm.2013.09.009 (2014). (PMID: 10.1016/j.neuropharm.2013.09.0092405549624055496)
      Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. The lancet. Psychiatry 3, 760–773, https://doi.org/10.1016/S2215-0366(16)00104-8 (2016). (PMID: 10.1016/S2215-0366(16)00104-82747576927475769)
      Chukwueke, C. C., & Le Foll, B. In Neuroscience of Nicotine (ed. Preedy, V. R.) Ch. 14, 107–177 (Academic Press (2019).
      Le Foll, B., Gallo, A., Le Strat, Y., Lu, L. & Gorwood, P. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behavioural pharmacology 20, 1–17, https://doi.org/10.1097/FBP.0b013e3283242f05 (2009). (PMID: 10.1097/FBP.0b013e3283242f051917984719179847)
      Sokoloff, P. & Le Foll, B. The dopamine D3 receptor, a quarter century later. The European journal of neuroscience 45, 2–19, https://doi.org/10.1111/ejn.13390 (2017). (PMID: 10.1111/ejn.133902760059627600596)
      Ross, J. T., Corrigall, W. A., Heidbreder, C. A. & LeSage, M. G. Effects of the selective dopamine D3 receptor antagonist SB-277011A on the reinforcing effects of nicotine as measured by a progressive-ratio schedule in rats. European journal of pharmacology 559, 173–179, https://doi.org/10.1016/j.ejphar.2007.01.004 (2007). (PMID: 10.1016/j.ejphar.2007.01.0041730311617303116)
      Pak, A. C. et al. The selective dopamine D3 receptor antagonist SB-277011A reduces nicotine-enhanced brain reward and nicotine-paired environmental cue functions. The international journal of neuropsychopharmacology 9, 585–602, https://doi.org/10.1017/S1461145706006560 (2006). (PMID: 10.1017/S14611457060065601694263516942635)
      Le Foll, B. & Goldberg, S. R. Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends in pharmacological sciences 26, 287–293, https://doi.org/10.1016/j.tips.2005.04.005 (2005). (PMID: 10.1016/j.tips.2005.04.0051592570315925703)
      Khaled, M. A. et al. The selective dopamine D3 receptor antagonist. SB 277011-A, but not the partial agonist BP 897, blocks cue-induced reinstatement of nicotine-seeking. The international journal of neuropsychopharmacology 13, 181–190, https://doi.org/10.1017/S1461145709991064 (2010). (PMID: 10.1017/S1461145709991064)
      Andreoli, M. et al. Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 28, 1272–1280, https://doi.org/10.1038/sj.npp.1300183 (2003). (PMID: 10.1038/sj.npp.1300183)
      Zerbino, D. R. et al. Ensembl 2018. Nucleic acids research 46, D754–D761, https://doi.org/10.1093/nar/gkx1098 (2018). (PMID: 10.1093/nar/gkx10982915595029155950)
      Lundstrom, K. & Turpin, M. P. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochemical and biophysical research communications 225, 1068–1072, https://doi.org/10.1006/bbrc.1996.1296 (1996). (PMID: 10.1006/bbrc.1996.129687807358780735)
      Jeanneteau, F. et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proceedings of the National Academy of Sciences of the United States of America 103, 10753–10758, https://doi.org/10.1073/pnas.0508189103 (2006). (PMID: 10.1073/pnas.05081891031680942616809426)
      Huang, W., Payne, T. J., Ma, J. Z. & Li, M. D. A functional polymorphism, rs6280, in DRD3 is significantly associated with nicotine dependence in European-American smokers. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 147B, 1109–1115, https://doi.org/10.1002/ajmg.b.30731 (2008). (PMID: 10.1002/ajmg.b.30731)
      Vandenbergh, D. J. et al. Dopamine receptor genes (DRD2, DRD3 and DRD4) and gene-gene interactions associated with smoking-related behaviors. Addiction biology 12, 106–116, https://doi.org/10.1111/j.1369-1600.2007.00054.x (2007). (PMID: 10.1111/j.1369-1600.2007.00054.x1740750417407504)
      Higgins, S. T. et al. Addiction Potential of Cigarettes With Reduced Nicotine Content in Populations With Psychiatric Disorders and Other Vulnerabilities to Tobacco Addiction. JAMA psychiatry 74, 1056–1064, https://doi.org/10.1001/jamapsychiatry.2017.2355 (2017). (PMID: 10.1001/jamapsychiatry.2017.23552883287628832876)
      Higgins, S. T. et al. Response to varying the nicotine content of cigarettes in vulnerable populations: an initial experimental examination of acute effects. Psychopharmacology 234, 89–98, https://doi.org/10.1007/s00213-016-4438-z (2017). (PMID: 10.1007/s00213-016-4438-z2771442727714427)
      Shahan, T. A., Bickel, W. K., Madden, G. J. & Badger, G. J. Comparing the reinforcing efficacy of nicotine containing and de-nicotinized cigarettes: a behavioral economic analysis. Psychopharmacology 147, 210–216 (1999). (PMID: 10.1007/s002130051162)
      Balter, L. J., Good, K. P. & Barrett, S. P. Smoking cue reactivity in current smokers, former smokers and never smokers. Addictive behaviors 45, 26–29, https://doi.org/10.1016/j.addbeh.2015.01.010 (2015). (PMID: 10.1016/j.addbeh.2015.01.0102563569225635692)
      Garcia-Rodriguez, O., Weidberg, S., Gutierrez-Maldonado, J. & Secades-Villa, R. Smoking a virtual cigarette increases craving among smokers. Addictive behaviors 38, 2551–2554, https://doi.org/10.1016/j.addbeh.2013.05.007 (2013). (PMID: 10.1016/j.addbeh.2013.05.0072379304223793042)
      Jenks, R. A. & Higgs, S. Reactivity to smoking- and food-related cues in currently dieting and non-dieting young women smokers. Journal of psychopharmacology 25, 520–529, https://doi.org/10.1177/0269881109359093 (2011). (PMID: 10.1177/02698811093590932014756920147569)
      Cosgrove, K. P. et al. Sex differences in the brain’s dopamine signature of cigarette smoking. The Journal of neuroscience: the official journal of the Society for Neuroscience 34, 16851–16855, https://doi.org/10.1523/JNEUROSCI.3661-14.2014 (2014). (PMID: 10.1523/JNEUROSCI.3661-14.2014)
      Doran, N. Sex differences in smoking cue reactivity: craving, negative affect, and preference for immediate smoking. The American journal on addictions 23, 211–217, https://doi.org/10.1111/j.1521-0391.2014.12094.x (2014). (PMID: 10.1111/j.1521-0391.2014.12094.x2472487724724877)
      Gendy, M. N. S. et al. Testing the PPAR hypothesis of tobacco use disorder in humans: A randomized trial of the impact of gemfibrozil (a partial PPARalpha agonist) in smokers. PloS one 13, e0201512, https://doi.org/10.1371/journal.pone.0201512 (2018). (PMID: 10.1371/journal.pone.02015123026099030260990)
      Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerstrom, K. O. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. British journal of addiction 86, 1119–1127 (1991). (PMID: 10.1111/j.1360-0443.1991.tb01879.x)
      Cappelleri, J. C. et al. Confirmatory factor analyses and reliability of the modified cigarette evaluation questionnaire. Addictive behaviors 32, 912–923, https://doi.org/10.1016/j.addbeh.2006.06.028 (2007). (PMID: 10.1016/j.addbeh.2006.06.0281687578716875787)
      Heishman, S. J., Singleton, E. G. & Pickworth, W. B. Reliability and validity of a Short Form of the Tobacco Craving Questionnaire. Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco 10, 643–651, https://doi.org/10.1080/14622200801908174 (2008). (PMID: 10.1080/14622200801908174)
      Weinberger, A. H., McKee, S. A. & George, T. P. Smoking cue reactivity in adult smokers with and without depression: a pilot study. The American journal on addictions 21, 136–144, https://doi.org/10.1111/j.1521-0391.2011.00203.x (2012). (PMID: 10.1111/j.1521-0391.2011.00203.x2233285722332857)
      Diener, E. & Emmons, R. A. The independence of positive and negative affect. Journal of personality and social psychology 47, 1105–1117 (1984). (PMID: 10.1037/0022-3514.47.5.1105)
      Perkins, K. A., Grobe, J. E., Weiss, D., Fonte, C. & Caggiula, A. Nicotine preference in smokers as a function of smoking abstinence. Pharmacology, biochemistry, and behavior 55, 257–263 (1996). (PMID: 10.1016/S0091-3057(96)00079-2)
      De Wit, H., & Johanson, C. E. in Methods of assessing the reinforcing properties of abused drugs 559–572 (Springer (1987).
      Hatsukami, D. K., Pickens, R. W., Svikis, D. S. & Hughes, J. R. Smoking topography and nicotine blood levels. Addictive behaviors 13, 91–95 (1988). (PMID: 10.1016/0306-4603(88)90031-7)
      Harrell, P. T. et al. Dopaminergic genetic variation moderates the effect of nicotine on cigarette reward. Psychopharmacology 233, 351–360, https://doi.org/10.1007/s00213-015-4116-6 (2016). (PMID: 10.1007/s00213-015-4116-62649769126497691)
      Arger, C. A. et al. Preliminary validity of the modified Cigarette Evaluation Questionnaire in predicting the reinforcing effects of cigarettes that vary in nicotine content. Experimental and clinical psychopharmacology 25, 473–478, https://doi.org/10.1037/pha0000145 (2017). (PMID: 10.1037/pha00001452925197629251976)
      Watkins, S. S., Koob, G. F. & Markou, A. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco 2, 19–37 (2000). (PMID: 10.1080/14622200050011277)
      Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. European journal of pharmacology 393, 295–314 (2000). (PMID: 10.1016/S0014-2999(00)00122-9)
      Pilla, M. et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375, https://doi.org/10.1038/22560 (1999). (PMID: 10.1038/22560)
      Di Ciano, P., Underwood, R. J., Hagan, J. J. & Everitt, B. J. Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 28, 329–338, https://doi.org/10.1038/sj.npp.1300148 (2003). (PMID: 10.1038/sj.npp.1300148)
      Carter, B. L. & Tiffany, S. T. Meta-analysis of cue-reactivity in addiction research. Addiction 94, 327–340 (1999). (PMID: 10.1046/j.1360-0443.1999.9433273.x)
      Chiuccariello, L. et al. Presentation of smoking-associated cues does not elicit dopamine release after one-hour smoking abstinence: A [11C]-(+)-PHNO PET study. PloS one 8, e60382, https://doi.org/10.1371/journal.pone.0060382 (2013). (PMID: 10.1371/journal.pone.00603822355596223555962)
      Mugnaini, M. et al. Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 38, 302–312, https://doi.org/10.1038/npp.2012.171 (2013). (PMID: 10.1038/npp.2012.171)
      Barrett, S. P., Boileau, I., Okker, J., Pihl, R. O. & Dagher, A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 54, 65–71, https://doi.org/10.1002/syn.20066 (2004). (PMID: 10.1002/syn.200661535213115352131)
      Tang, D. W. et al. Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI. NeuroImage 60, 2136–2143, https://doi.org/10.1016/j.neuroimage.2012.01.119 (2012). (PMID: 10.1016/j.neuroimage.2012.01.1192234280222342802)
      Hutchison, K. E., LaChance, H., Niaura, R., Bryan, A. & Smolen, A. The DRD4 VNTR polymorphism influences reactivity to smoking cues. Journal of abnormal psychology 111, 134–143 (2002). (PMID: 10.1037/0021-843X.111.1.134)
      Erblich, J., Lerman, C., Self, D. W., Diaz, G. A. & Bovbjerg, D. H. Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African-American smokers. Molecular psychiatry 10, 407–414, https://doi.org/10.1038/sj.mp.4001588 (2005). (PMID: 10.1038/sj.mp.40015881538192615381926)
      Heishman, S. J., Lee, D. C., Taylor, R. C. & Singleton, E. G. Prolonged duration of craving, mood, and autonomic responses elicited by cues and imagery in smokers: Effects of tobacco deprivation and sex. Experimental and clinical psychopharmacology 18, 245–256, https://doi.org/10.1037/a0019401 (2010). (PMID: 10.1037/a00194012054538920545389)
      Shiffman, S. et al. Smoker reactivity to cues: effects on craving and on smoking behavior. Journal of abnormal psychology 122, 264–280, https://doi.org/10.1037/a0028339 (2013). (PMID: 10.1037/a00283392270888422708884)
      Tiffany, S. T. & Drobes, D. J. Imagery and smoking urges: the manipulation of affective content. Addictive behaviors 15, 531–539, https://doi.org/10.1016/0306-4603(90)90053-z (1990). (PMID: 10.1016/0306-4603(90)90053-z20758502075850)
      Niaura, R., Abrams, D., Demuth, B., Pinto, R. & Monti, P. Responses to smoking-related stimuli and early relapse to smoking. Addictive behaviors 14, 419–428, https://doi.org/10.1016/0306-4603(89)90029-4 (1989). (PMID: 10.1016/0306-4603(89)90029-427821242782124)
      Miranda, R. Jr., Rohsenow, D. J., Monti, P. M., Tidey, J. & Ray, L. Effects of repeated days of smoking cue exposure on urge to smoke and physiological reactivity. Addictive behaviors 33, 347–353, https://doi.org/10.1016/j.addbeh.2007.09.011 (2008). (PMID: 10.1016/j.addbeh.2007.09.0111791338117913381)
      Saladin, M. E. et al. Gender differences in craving and cue reactivity to smoking and negative affect/stress cues. The American journal on addictions 21, 210–220, https://doi.org/10.1111/j.1521-0391.2012.00232.x (2012). (PMID: 10.1111/j.1521-0391.2012.00232.x2249422322494223)
      Tiffany, S. T. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychological review 97, 147–168 (1990). (PMID: 10.1037/0033-295X.97.2.147)
      Brown, J. et al. Cigarette craving and withdrawal symptoms during temporary abstinence and the effect of nicotine gum. Psychopharmacology 229, 209–218, https://doi.org/10.1007/s00213-013-3100-2 (2013). (PMID: 10.1007/s00213-013-3100-22363630223636302)
    • Grant Information:
      ZIA DA000584 United States ImNIH Intramural NIH HHS
    • Accession Number:
      0 (Receptors, Dopamine D3)
    • Publication Date:
      Date Created: 20200307 Date Completed: 20201123 Latest Revision: 20240214
    • Publication Date:
      20240214
    • Accession Number:
      PMC7058013
    • Accession Number:
      10.1038/s41598-020-60940-4
    • Accession Number:
      32139730