Menu
×
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Identification of signal peptide features for substrate specificity in human Sec62/Sec63-dependent ER protein import.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Schorr S;Schorr S; Nguyen D; Nguyen D; Haßdenteufel S; Haßdenteufel S; Nagaraj N; Nagaraj N; Cavalié A; Cavalié A; Greiner M; Greiner M; Weissgerber P; Weissgerber P; Loi M; Loi M; Paton AW; Paton AW; Paton JC; Paton JC; Molinari M; Molinari M; Förster F; Förster F; Dudek J; Dudek J; Lang S; Lang S; Helms V; Helms V; Zimmermann R; Zimmermann R
- Source:
The FEBS journal [FEBS J] 2020 Nov; Vol. 287 (21), pp. 4612-4640. Date of Electronic Publication: 2020 Mar 20.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
- Publication Information: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
- Subject Terms: Protein Sorting Signals*; Endoplasmic Reticulum/*metabolism ; Membrane Transport Proteins/*metabolism ; Molecular Chaperones/*metabolism ; RNA-Binding Proteins/*metabolism; Animals ; HEK293 Cells ; HSP40 Heat-Shock Proteins/metabolism ; HeLa Cells ; Humans ; Membrane Transport Proteins/genetics ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Chaperones/genetics ; Protein Transport ; Proteome/metabolism ; Proteomics/methods ; RNA-Binding Proteins/genetics ; SEC Translocation Channels/genetics ; SEC Translocation Channels/metabolism ; Substrate Specificity
- Abstract: In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).
(© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.) - Comments: Comment in: FEBS J. 2020 Nov;287(21):4607-4611. (PMID: 32301242)
- References: Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189, 347-358.
Blobel G & Dobberstein B (1975) Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67, 835-851.
Blobel G & Dobberstein B (1975) Transfer of proteins across membranes: II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67, 852-862.
Pfeffer S, Dudek J, Zimmermann R & Förster F (2016) Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane. Biochim Biophys Acta 1860, 2122-2129.
Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F & Zimmermann R (2017) An update on Sec61-channel function, mechanisms, and related diseases. Front Physiol 8, 887.
von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184, 99-105.
von Heijne G & Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174, 671-678.
Walter P & Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein, SRP, mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91, 551-556.
Meyer DI & Dobberstein B (1980) A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: requirements for its extraction and reassociation with the membrane. J Cell Biol 8, 498-502.
Gilmore R, Blobel G & Walter P (1982) Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol 95, 463-469.
Görlich D, Prehn S, Hartmann E, Kalies K-U & Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489-503.
Görlich D & Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615-630.
Wiedmann B, Saki H, Davis TA & Wiedmann M (1994) A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434-440.
Fons RD, Bogert BA & Hegde RS (2003) Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160, 529-539.
Meyer H-A, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU & Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275, 14550-14557.
Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J & Zimmermann R (2000) Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci USA 97, 7214-7219.
Lakkaraju A, Thankappan R, Mary C, Garrison JL, Taunton J & Strub K (2012) Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 23, 2712-2722.
Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Hassdenteufel S, Tatzelt J et al. (2012) Different effects of Sec61α-, Sec62 and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125, 1958-1969.
Haßdenteufel S, Johnson N, Paton AW, Paton JC, High S & Zimmermann R (2018) Chaperone-mediated Sec61-channel gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep 23, 1373-1386.
Ziska A, Tatzelt J, Dudek J, Paton AW, Paton JC, Zimmermann R & Haßdenteufel S (2019) The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61-channel gating. Biol Open 8, bio040691.
Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J & Zimmermann R (2018) Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat Commun 9, 3765.
Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, Baumeister W, Zimmermann R, Freeze HH, Engel BD et al. (2017) Dissecting the molecular organization of the translocon-associated complex. Nat Commun 8, 14516.
Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, Linxweiler J, Dudek J, Blum R, Helms V et al. (2012) BiP-mediated closing of the Sec61-channel limits Ca2+ leakage from the ER. EMBO J 31, 3282-3296.
Itskanov S & Park E (2019) Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science 363, 84-87.
Wu X, Cabanos C & Rapoport TA (2019) Structure of the post-translational protein translocation machinery of the ER membrane. Nature 566, 136-139.
Hegde RS & Bernstein HD (2006) The surprising complexity of signal sequences. Trends Biochem Sci 31, 564-571.
Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R & Wagner R (2003) The Sec61p complex is a dynamic precursor activated channel. Mol Cell 12, 261-268.
Voorhees RM & Hegde RS (2016) Structure of the Sec61 channel opened by a signal sequence. Science 351, 88-91.
Conti BJ, Devaraneni PK, Yang Z, David LL & Skach WR (2015) Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol Cell 58, 269-283.
Dejgaard K, Theberge JF, Heath-Engel H, Chevet E, Tremblay ML & Thomas DY (2010) Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J Proteome Res 9, 1763-1771.
Schlenstedt G, Gudmundsson GH, Boman HG & Zimmermann R (1990) A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes. J Biol Chem 265, 13960-13968.
Shao S & Hegde RS (2011) A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147, 1576-1588.
Johnson N, Haßdenteufel S, Theis M, Paton AW, Paton JC, Zimmermann R & High S (2013) The signal sequence influences posttranslational ER translocation at distinct stages. PLOS One 8, e75394.
Davis EM, Kim J, Menasche BL, Sheppard J, Liu X, Tan AC & Shen J (2015) Comparative haploid genetic screens reveal divergent pathways in the biogenesis and trafficking of glycophosphatidylinositol-anchored proteins. Cell Rep 11, 1727-1736.
Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM & Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver disease defines polycystin-1 as the central determinant of cyst formation. Nat Gen 43, 639-647.
Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB, Fasana E, Fregno I, Galli C, Loi M, Soldà T et al. (2017) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18, 1173-1184.
Müller L, de Escauriaza MD, Lajoie P, Theis M, Jung M, Müller A, Burgard C, Greiner M, Snapp EL, Dudek J et al. (2010) Evolutionary gain of function of the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell 21, 691-703.
Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MC, Rossjohn J, Talbot UM & Paton JC (2005) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443, 548-52.
Lloyd DJ, Wheeler MC & Gekakis N (2010) A point mutation in Sec61a1 leads to diabetes and hepatosteatosis in mice. Diabetes 59, 460-470.
Jin Y, Zhuang M & Hendershot L (2009) ERdj3, a lumenal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48, 41-49.
Haßdenteufel S, Nguyen D, Helms V, Lang S & Zimmermann R (2019) ER-import of small human presecretory proteins: components and mechanisms. FEBS Lett 593, 2506-2524.
Ast T, Cohen G & Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152, 1134-1145.
Guo H, Xiong Y, Witkowski P, Cui J, Wang LJ, Sun J, Lara-Lemus R, Haataja L, Hutchison K, Shan SO et al. (2014) Inefficient translocation of preproinsulin contributes to pancreatic ß cell failure and late-onset diabetes. J Biol Chem 289, 16290-16302.
Ampofo E, Welker S, Jung M, Müller L, Greiner M, Zimmermann R & Montenarh M (2013) CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochim Biophys Acta 1830, 2938-2945.
Linxweiler M, Schorr S, Schäuble N, Jung M, Linxweiler J, Langer F, Schäfers HJ, Cavalié A, Zimmermann R & Greiner M (2013) Targeting cell migration and the ER stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC 13, 574.
Oyamadori S, Yun C, Fisher EA, Kreglinger N, Kreibich G, Oyadomari M, Harding HP, Goodman AG, Harant H, Garrison JL et al. (2006) Cotranslational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126, 727-739.
Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ & Hegde RS (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18, 3681-3691.
Petrova K, Oyamadori S, Hendershot LM & Ron D (2008) Regulated association of misfolded endoplasmic reticulum luminal proteins with P58/DNAJC3. EMBO J 27, 2862-2872.
Haßdenteufel S, Klein M-C, Melnyk A & Zimmermann R (2014) Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochem Cell Biol 92, 499-509.
Schubert D, Klein M-C, Haßdenteufel S, Caballero-Oteyza A, Yang L, Proietti M, Bulashevska A, Kemming J, Kühn J, Winzer S et al. (2017) Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha subunit (SEC61A1). J Allergy Clin Immunol 141, 1427-1438.
Bolar NA, Golzio C, Zivna M, Hyot G, van Hemelrijk C, Schepers D, Vandeweyer G, Hoischen A, Huyghe JR, Raes A et al. (2016) Heterozygous loss-of-function SEC61A mutations cause autosomal-dominant tubule-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Gen 99, 174-187.
Drenth JPH, te Morsche RHM, Smink R, Bonifacino JS & Jansen JBMJ (2003) Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet 33, 345-347.
Schorr S, Klein MC, Gamayun I, Melnyk A, Jung M, Schäuble N, Wang Q, Hemmis B, Bochen F, Greiner M et al. (2015) Co-chaperone specificity in gating of the polypeptide conducting channel in the membrane of the human endoplasmic reticulum. J Biol Chem 290, 18621-1835.
Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R & Förster F (2012) Structure and 3D arrangement of ER-membrane associated ribosomes. Structure 20, 1508-1518.
Bies C, Blum R, Dudek J, Nastainczyk W, Oberhauser S, Jung M & Zimmermann R (2004) Characterization of pancreatic ERj3p, a homolog of yeast DnaJ-like protein Scj1p. Biol Chem 385, 389-395.
Rappsilber J, Mann M & Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896-1906.
Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O & Mann M (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteom 1, M111.013722.
Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S & Mann M (2015) Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 16, 387-395.
Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, Rassner M, Grönke S, Froelich J, Dieterich C et al. (2017) A proteomic atlas of insulin signaling reveals tissue-specific mechanisms of longevity assurance. Mol Sys Biol 13, 939.
Cox J & Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372.
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N & Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom 13, 2513-2526.
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S & Mann M (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Sys Biol 7, 548.
Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T et al. (2016) 2016 update of the PRIDE database and related tools. Nucleic Acids Res 44, D447-D456.
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M & Cox J (2016) The Perseus computational platform for comprehensive analysis of (proteo)omics data. Nat Methods 13, 731-740.
Hyunsoo K, Golub GH & Park H (2005) Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinform 21, 187-198.
Tusher VG, Tibshirani R & Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98, 5116-5121.
Kyte J & Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157, 105-132.
Käll L, Krogh A & Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027-1036.
Zimmerman JM, Eliezer N & Simha R (1968) The characterization of amino acid sequences in proteins by statistical methods. J Theoret Biol 21, 170-201.
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F et al. (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712-723. - Contributed Indexing: Keywords: Sec61 channel; Sec62; Sec63; endoplasmic reticulum; protein import
- Molecular Sequence: GENBANK CAG33377.1; AAH40747.1
- Accession Number: 0 (DNAJB11 protein, human)
0 (HSP40 Heat-Shock Proteins)
0 (Membrane Transport Proteins)
0 (Molecular Chaperones)
0 (Protein Sorting Signals)
0 (Proteome)
0 (RNA-Binding Proteins)
0 (SEC Translocation Channels)
0 (SEC62 protein, human)
0 (SEC63 protein, human) - Publication Date: Date Created: 20200306 Date Completed: 20210524 Latest Revision: 20210524
- Publication Date: 20221213
- Accession Number: 10.1111/febs.15274
- Accession Number: 32133789
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.