Plasma Ceramides and Sphingomyelins of Pediatric Patients Increase in Primary Ciliary Dyskinesia but Decrease in Cystic Fibrosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Subscription Services, Inc Country of Publication: United States NLM ID: 0060450 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-9307 (Electronic) Linking ISSN: 00244201 NLM ISO Abbreviation: Lipids Subsets: MEDLINE
    • Publication Information:
      Publication: 2018- : Hoboken, NJ : Wiley Subscription Services, Inc.
      Original Publication: Chicago, American Oil Chemists' Society.
    • Subject Terms:
    • Abstract:
      We investigated plasma sphingomyelin (CerPCho) and ceramide (Cer) levels in pediatric patients with cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). Plasma samples were obtained from CF (n = 19) and PCD (n = 7) patients at exacerbation, discharge, and stable periods. Healthy children (n = 17) of similar age served as control. Levels of 16-24 CerPCho and 16-24 Cer were measured by LC-MS/MS. Concentrations of all CerPCho and Cer species measured at exacerbation were significantly lower in patients with CF than PCD. 16, 18, 24 CerPCho, and 22, 24 Cer in exacerbation; 18, 24 CerPCho, and 18, 20, 22, 24 Cer at discharge; 18, 24 CerPCho and 24 Cer at stable period were significantly lower in CF patients than healthy children (p < 0.001 and p < 0.05). All CerPCho and Cer levels of PCD patients were significantly higher except 24 CerPCho and 24 Cer during exacerbation, 24 CerPCho at discharge, and 18, 22 CerPCho levels at stable period (p < 0.001 and p < 0.05) compared with healthy children. There was no significant difference among exacerbation, discharge, and stable periods in each group for Cer and CerPCho levels. This is the first study measuring plasma Cer and CerPCho levels in PCD and third study in CF patients. The dramatic difference in plasma levels of most CerPCho and Cer species found between two diseases suggest that cilia pathology in PCD and CFTR mutation in CF seem to alter sphingolipid metabolism possibly in opposite directions.
      (© 2020 AOCS.)
    • References:
      Adada, M., Luberto, C., & Canals, D. (2016) Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chemistry and Physics of Lipids, 197:45-59.
      Andrieu-Abadie, N., Gouaze, V., Salvayre, R., & Levade, T. (2001) Ceramide in apoptosis signaling: Relationship with oxidative stress. Free Radical Biology & Medicine, 31:717-728.
      Aslan, M., Kirac, E., Kaya, S., Ozcan, F., Salim, O., & Kupesiz, O. A. (2018) Decreased serum levels of sphingomyelins and ceramides in sickle cell disease patients. Lipids, 53:313-322.
      Aureli, M., Schiumarini, D., Loberto, N., Bassi, R., Tamanini, A., Mancini, G., … Sonnino, S. (2016) Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chemistry and Physics of Lipids, 200:94-103.
      Barasch, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D., & Al-Awqati, Q. (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature, 352:70-73.
      Becker, K. A., Henry, B., Ziobro, R., Tummler, B., Gulbins, E., & Grassme, H. (2012) Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. Journal of Molecular Medicine (Berlin, Germany), 90:1011-1023.
      Becker, K. A., Riethmuller, J., Luth, A., Doring, G., Kleuser, B., & Gulbins, E. (2010) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology, 42:716-724.
      Brodlie, M., McKean, M. C., Johnson, G. E., Gray, J., Fisher, A. J., Corris, P. A., … Ward, C. (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. American Journal of Respiratory and Critical Care Medicine, 182:369-375.
      Cannon, C. L., Kowalski, M. P., Stopak, K. S., & Pier, G. B. (2003) Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. American Journal of Respiratory Cell and Molecular Biology, 29:188-197.
      De Boeck, K., Derichs, N., Fajac, I., de Jonge, H. R., Bronsveld, I., Sermet, I., … Wilschanski, M. (2011) New clinical diagnostic procedures for cystic fibrosis in Europe. Journal of Cystic Fibrosis, 10:S53-S66.
      Dhooghe, B., Noel, S., Huaux, F., & Leal, T. (2014) Lung inflammation in cystic fibrosis: Pathogenesis and novel therapies. Clinical Biochemistry, 47:539-546.
      Figueroa, V., Milla, C., Parks, E. J., Schwarzenberg, S. J., & Moran, A. (2002) Abnormal lipid concentrations in cystic fibrosis. The American Journal of Clinical Nutrition, 75:1005-1011.
      Ghasemi, N., & Tayebi, N. (2007) A case of Kartagener syndrome. Journal of Medical Sciences, 7:929-931.
      Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M., & Wilson, J. M. (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell, 88:553-560.
      Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., … Gulbins, E. (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nature Medicine, 9:322-330.
      Guilbault, C., De Sanctis, J. B., Wojewodka, G., Saeed, Z., Lachance, C., Skinner, T. A., … Radzioch, D. (2008) Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology, 38:47-56.
      Guilbault, C., Wojewodka, G., Saeed, Z., Hajduch, M., Matouk, E., De Sanctis, J. B., & Radzioch, D. (2009) Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. American Journal of Respiratory Cell and Molecular Biology, 41:100-106.
      Gulbins, E. (2010) Lipids control mucus production in cystic fibrosis. Nature Medicine, 16:267.
      He, Q., Wang, G., Dasgupta, S., Dinkins, M., Zhu, G., & Bieberich, E. (2012) Characterization of an apical ceramide-enriched compartment regulating ciliogenesis. Molecular Biology of the Cell, 23:3156-3166.
      Hicks, A. A., Pramstaller, P. P., Johansson, A., Vitart, V., Rudan, I., Ugocsai, P., … Campbell, H. (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genetics, 5:e1000672.
      Hoppe, J. E., Wagner, B. D., Sagel, S. D., Accurso, F. J., & Zemanick, E. T. (2017) Pulmonary exacerbations and clinical outcomes in a longitudinal cohort of infants and preschool children with cystic fibrosis. BMC Pulmonary Medicine, 17:188-188.
      Jungas, T., Motta, I., Duffieux, F., Fanen, P., Stoven, V., & Ojcius, D. M. (2002) Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. The Journal of Biological Chemistry, 277:27912-27918.
      Kong, J. N., Hardin, K., Dinkins, M., Wang, G., He, Q., Mujadzic, T., … Bieberich, E. (2015) Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Molecular Biology of the Cell, 26:4451-4465.
      Kowalski, M. P., & Pier, G. B. (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. Journal of Immunology, 172:418-425.
      Linsdell, P., & Hanrahan, J. W. (1998) Glutathione permeability of CFTR. The American Journal of Physiology, 275:C323-C326.
      Liu, B., Andrieu-Abadie, N., Levade, T., Zhang, P., Obeid, L. M., & Hannun, Y. A. (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. The Journal of Biological Chemistry, 273:11313-11320.
      Lucas, J. S., Burgess, A., Mitchison, H. M., Moya, E., Williamson, M., & Hogg, C. (2014) Diagnosis and management of primary ciliary dyskinesia. Archives of Disease in Childhood, 99:850-856.
      Meeusen, J. W., Donato, L. J., Bryant, S. C., Baudhuin, L. M., Berger, P. B., & Jaffe, A. S. (2018) Plasma Ceramides. Arteriosclerosis, Thrombosis, and Vascular Biology, 38:1933-1939.
      Noe, J., Petrusca, D., Rush, N., Deng, P., VanDemark, M., Berdyshev, E., … Petrache, I. (2009) CFTR regulation of intracellular pH and ceramides is required for lung endothelial cell apoptosis. American Journal of Respiratory Cell and Molecular Biology, 41:314-323.
      Park, W. J., & Park, J. W. (2015) The effect of altered sphingolipid acyl chain length on various disease models. Biological Chemistry, 396:693-705.
      Petrache, I., Kamocki, K., Poirier, C., Pewzner-Jung, Y., Laviad, E. L., Schweitzer, K. S., … Futerman, A. H. (2013) Ceramide synthases expression and role of ceramide synthase-2 in the lung: Insight from human lung cells and mouse models. PLoS One, 8:e62968.
      Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H., … Dennis, E. A. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research, 51:3299-3305.
      Rossman, C. M., Forrest, J. B., Lee, R. M., Newhouse, A. F., & Newhouse, M. T. (1981) The dyskinetic cilia syndrome; abnormal ciliary motility in association with abnormal ciliary ultrastructure. Chest, 80:860-865.
      Saeed, Z., Guilbault, C., De Sanctis, J. B., Henri, J., Marion, D., St-Arnaud, R., & Radzioch, D. (2008) Fenretinide prevents the development of osteoporosis in Cftr-KO mice. Journal of Cystic Fibrosis, 7:222-230.
      Seitz Aaron, P., Grassmé, H., Edwards Michael, J., Pewzner-Jung, Y., & Gulbins, E. (2015) Ceramide and sphingosine in pulmonary infections. Biological Chemistry, 396:611.
      Summers, S. A. (2018) Could ceramides become the new cholesterol? Cell Metabolism, 27:276-280.
      Teichgraber, V., Ulrich, M., Endlich, N., Riethmuller, J., Wilker, B., De Oliveira-Munding, C. C., … Gulbins, E. (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nature Medicine, 14:382-391.
      Ulrich, M., Worlitzsch, D., Viglio, S., Siegmann, N., Iadarola, P., Shute, J. K., … Doring, G. (2010) Alveolar inflammation in cystic fibrosis. Journal of Cystic Fibrosis, 9:217-227.
      Vaughan, W. J., Lindgren, F. T., Whalen, J. B., & Abraham, S. (1978) Serum lipoprotein concentrations in cystic fibrosis. Science, 199:783-786.
      Vilela, R. M., Lands, L. C., Meehan, B., & Kubow, S. (2006) Inhibition of IL-8 release from CFTR-deficient lung epithelial cells following pre-treatment with fenretinide. International Immunopharmacology, 6:1651-1664.
      Wallis, C. (2019) Diagnosis and presentation of cystic fibrosis. In R. W. Wilmott, R. Deterding, A. Li, F. A. Ratjen, P. Sly, H. J. Zar, & A. Bush (Eds.), Kendig's disorders of the respiratory tract in children (9th ed., pp. 769-776.e762). Philadelphia, PA: Elsevier.
      Wang, G., Krishnamurthy, K., & Bieberich, E. (2009) Regulation of primary cilia formation by ceramide. Journal of Lipid Research, 50:2103-2110.
      Yu, H., Zeidan, Y. H., Wu, B. X., Jenkins, R. W., Flotte, T. R., Hannun, Y. A., & Virella-Lowell, I. (2009) Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology, 41:367-375.
      Zalloua, P., Kadar, H., Hariri, E., Abi Farraj, L., Brial, F., Hedjazi, L., … Gauguier, D. (2019) Untargeted mass spectrometry lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids in Health and Disease, 18:38.
      Zhang, Y., Li, X., Carpinteiro, A., & Gulbins, E. (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. Journal of Immunology, 181:4247-4254.
      Ziobro, R., Henry, B., Edwards, M. J., Lentsch, A. B., & Gulbins, E. (2013) Ceramide mediates lung fibrosis in cystic fibrosis. Biochemical and Biophysical Research Communications, 434:705-709.
    • Grant Information:
      THD-2016-12638 International Scientific Research Projects Coordination Unit of Hacettepe University
    • Contributed Indexing:
      Keywords: Ceramide; Cystic fibrosis; Inflammation; Primary ciliary dyskinesia; Sphingolipid; Sphingomyelin
    • Accession Number:
      0 (CFTR protein, human)
      0 (Ceramides)
      0 (DNAAF3 protein, human)
      0 (Microtubule-Associated Proteins)
      0 (Sphingomyelins)
      126880-72-6 (Cystic Fibrosis Transmembrane Conductance Regulator)
    • Publication Date:
      Date Created: 20200303 Date Completed: 20210609 Latest Revision: 20210609
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/lipd.12230
    • Accession Number:
      32120452