A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 100883645 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1463-1326 (Electronic) Linking ISSN: 14628902 NLM ISO Abbreviation: Diabetes Obes Metab Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Wiley-Blackwell, c1999-
    • Subject Terms:
    • Abstract:
      Aim: To investigate which metabolic pathways are targeted by the sodium-glucose co-transporter-2 inhibitor dapagliflozin to explore the molecular processes involved in its renal protective effects.
      Methods: An unbiased mass spectrometry plasma metabolomics assay was performed on baseline and follow-up (week 12) samples from the EFFECT II trial in patients with type 2 diabetes with non-alcoholic fatty liver disease receiving dapagliflozin 10 mg/day (n = 19) or placebo (n = 6). Transcriptomic signatures from tubular compartments were identified from kidney biopsies collected from patients with diabetic kidney disease (DKD) (n = 17) and healthy controls (n = 30) from the European Renal cDNA Biobank. Serum metabolites that significantly changed after 12 weeks of dapagliflozin were mapped to a metabolite-protein interaction network. These proteins were then linked with intra-renal transcripts that were associated with DKD or estimated glomerular filtration rate (eGFR). The impacted metabolites and their protein-coding transcripts were analysed for enriched pathways.
      Results: Of all measured (n = 812) metabolites, 108 changed (P < 0.05) during dapagliflozin treatment and 74 could be linked to 367 unique proteins/genes. Intra-renal mRNA expression analysis of the genes encoding the metabolite-associated proteins using kidney biopsies resulted in 105 genes that were significantly associated with eGFR in patients with DKD, and 135 genes that were differentially expressed between patients with DKD and controls. The combination of metabolites and transcripts identified four enriched pathways that were affected by dapagliflozin and associated with eGFR: glycine degradation (mitochondrial function), TCA cycle II (energy metabolism), L-carnitine biosynthesis (energy metabolism) and superpathway of citrulline metabolism (nitric oxide synthase and endothelial function).
      Conclusion: The observed molecular pathways targeted by dapagliflozin and associated with DKD suggest that modifying molecular processes related to energy metabolism, mitochondrial function and endothelial function may contribute to its renal protective effect.
      (© 2020 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.)
    • References:
      Nephrol Dial Transplant. 2011 Nov;26(11):3537-43. (PMID: 21378154)
      Cardiovasc Diabetol. 2017 Jul 6;16(1):84. (PMID: 28683796)
      Diabetologia. 2018 Sep;61(9):1923-1934. (PMID: 29971527)
      Prog Neurobiol. 2007 Feb;81(2):89-131. (PMID: 17275978)
      Nephrol Dial Transplant. 2020 Feb 1;35(2):274-282. (PMID: 32030417)
      N Engl J Med. 2015 Nov 26;373(22):2117-28. (PMID: 26378978)
      JCI Insight. 2019 Mar 7;4(5):. (PMID: 30843877)
      J Clin Endocrinol Metab. 2016 Dec;101(12):5044-5052. (PMID: 27648961)
      Intern Med. 2018 Aug 01;57(15):2147-2156. (PMID: 29607968)
      J Clin Endocrinol Metab. 2018 Dec 1;103(12):4357-4364. (PMID: 30060124)
      J Clin Med Res. 2016 Dec;8(12):844-847. (PMID: 27829948)
      J Am Soc Nephrol. 2016 Feb;27(2):466-81. (PMID: 26203118)
      Amino Acids. 2013 Sep;45(3):463-77. (PMID: 23615880)
      J Diabetes Investig. 2018 Sep;9(5):1025-1032. (PMID: 29352520)
      J Am Soc Nephrol. 2018 Jul;29(7):1849-1858. (PMID: 29654216)
      Diabetes. 2006 Nov;55(11):2993-3003. (PMID: 17065335)
      N Engl J Med. 2019 Jan 24;380(4):347-357. (PMID: 30415602)
      Kidney Int. 2018 Nov;94(5):912-925. (PMID: 30021702)
      Anal Chem. 2009 Aug 15;81(16):6656-67. (PMID: 19624122)
      Diabetes Obes Metab. 2019 Nov;21(11):2422-2428. (PMID: 31264758)
      Nat Rev Nephrol. 2017 Jan;13(1):11-26. (PMID: 27941935)
      N Engl J Med. 2017 Aug 17;377(7):644-657. (PMID: 28605608)
      Pharmacol Rev. 2008 Mar;60(1):79-127. (PMID: 18323402)
      Diabetes Obes Metab. 2020 Jul;22(7):1157-1166. (PMID: 32115853)
      Cell Metab. 2008 Jan;7(1):45-56. (PMID: 18177724)
      Kidney Int. 2002 Jan;61(1):133-40. (PMID: 11786093)
      Circulation. 2017 Sep 5;136(10):969-972. (PMID: 28874423)
      Arch Biochem Biophys. 2016 Jan 1;589:81-92. (PMID: 26476344)
      Eur Heart J. 2012 Apr;33(7):829-37, 837a-837d. (PMID: 21890489)
      Cardiovasc Diabetol. 2019 Nov 28;18(1):165. (PMID: 31779619)
      Eur J Endocrinol. 2018 Apr;178(4):R113-R125. (PMID: 29371333)
      Am J Nephrol. 2017 Dec 13;46(6):462-472. (PMID: 29253846)
      Diabetes Obes Metab. 2013 Sep;15(9):853-62. (PMID: 23668478)
      Clin Chem. 1998 Mar;44(3):463-71. (PMID: 9510849)
      Sci Rep. 2019 Mar 18;9(1):4703. (PMID: 30886225)
    • Grant Information:
      P30 DK081943 United States DK NIDDK NIH HHS
    • Contributed Indexing:
      Keywords: bioinformatics; dapagliflozin; kidney function; metabolomics; sodium-glucose co-transporter-2; type 2 diabetes
    • Accession Number:
      0 (Benzhydryl Compounds)
      0 (Glucosides)
      0 (Sodium-Glucose Transporter 2 Inhibitors)
      0 (Symporters)
      1ULL0QJ8UC (dapagliflozin)
      9NEZ333N27 (Sodium)
      IY9XDZ35W2 (Glucose)
    • Publication Date:
      Date Created: 20200303 Date Completed: 20210624 Latest Revision: 20231111
    • Publication Date:
      20231215
    • Accession Number:
      PMC7317707
    • Accession Number:
      10.1111/dom.14018
    • Accession Number:
      32115853