Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8506292 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-6033 (Electronic) Linking ISSN: 15206033 NLM ISO Abbreviation: Biotechnol Prog Subsets: MEDLINE
    • Publication Information:
      Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
      Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
    • Subject Terms:
    • Abstract:
      The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO 2 ) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO 2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L -1 d -1 ). The highest values of biomass concentration (1.98 g L -1 ), biomass productivity (131.8 mg L -1 d -1 ), carbon in biomass (47.9% w w -1 ), CO 2 fixation rate (231.6 mg L -1 d -1 ), and CO 2 use efficiency (80.5% w w -1 ) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO 2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w -1 ). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.
      (© 2020 American Institute of Chemical Engineers.)
    • References:
      International Energy Agency (IEA). CO2 Emissions from Fuel Combustion 2017-Highlights. Paris: OECD Publishing; 2017. https://doi.org/10.1787/co2_fuel-2017-en.
      Dlugokencky E, Tans P. Annual Mean Growth Rate for Mauna Loa, Hawaii. Published 2020. Accessed February 22, 2020.
      Zhou W, Wang J, Chen P, et al. Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sustain Energy Rev. 2017;76:1163-1175. https://doi.org/10.1016/j.rser.2017.03.065.
      Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev. 2014;31:121-132. https://doi.org/10.1016/j.rser.2013.11.054.
      Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol. 2008;79(5):707-718. https://doi.org/10.1007/s00253-008-1518-y.
      Acién FG, Fernández JM, Magán JJ, Molina E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv. 2012;30(6):1344-1353. https://doi.org/10.1016/j.biotechadv.2012.02.005.
      Hughes E, Benemann JR. Biological fossil CO2 mitigation. Energ Conver Manage. 1997;38:S467-S473. https://doi.org/10.1016/S0196-8904(96)00312-3.
      Costa JAV, Morais MG. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol. 2011;102(1):2-9. https://doi.org/10.1016/j.biortech.2010.06.014.
      Kumar A, Ergas S, Yuan X, et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28(7):371-380. https://doi.org/10.1016/j.tibtech.2010.04.004.
      Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog. 2006;22(6):1490-1506. https://doi.org/10.1021/bp060065r.
      Moraes L, Rosa GM, Cardias BB, Santos LO, Costa JAV. Microalgal biotechnology for greenhouse gas control: carbon dioxide fixation by Spirulina sp. at different diffusers. Ecol Eng. 2016;91:426-431. https://doi.org/10.1016/j.ecoleng.2016.02.035.
      Chai X, Zhao X. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technol. 2012;116:360-365. https://doi.org/10.1016/j.biortech.2012.03.105.
      Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol. 2010;85(3):387-394. https://doi.org/10.1002/jctb.2332.
      Fan LH, Zhang YT, Zhang L, Chen HL. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci. 2008;325(1):336-345. https://doi.org/10.1016/j.memsci.2008.07.044.
      Fan L, Zhang Y, Cheng L, Zhang L, Tang D, Chen H. Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol. 2007;30(8):1094-1099. https://doi.org/10.1002/ceat.200700141.
      Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sustain Energy Rev. 2011;15(8):4002-4012. https://doi.org/10.1016/j.rser.2011.07.031.
      Mortezaeikia V, Tavakoli O, Yegani R, Faramarzi M. Cyanobacterial CO2 biofixation in batch and semi-continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors. Greenhouse Gas Sci Technol. 2016;6(2):218-231. https://doi.org/10.1002/ghg.1542.
      Bilad MR, Arafat HA, Vankelecom IFJ. Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv. 2014;32(7):1283-1300. https://doi.org/10.1016/j.biotechadv.2014.07.008.
      Morais MG, Reichert CC, Dalcanton F, Durante AJ, Marins LF, Costa JAV. Isolation and characterization of a new Arthrospira strain. Zeitschrift Fur Naturforsch - Sect C J Biosci. 2008;63(1-2):144-150.
      Zarrouk C. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Seth et Gardner) Geitler. PhD Thesis. University of Paris, Paris; 1966.
      Rosa GM, Morais MG, Costa JAV. Fed-batch cultivation with CO2 and monoethanolamine: influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production. Bioresour Technol. 2019;273:627-633. https://doi.org/10.1016/j.biortech.2018.11.010.
      Rosa GM, Moraes L, Cardias BB, Souza MRAZ, Costa JAV. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in Semicontinuous mode with nutrient recycle. Bioresour Technol. 2015;192:321-327. https://doi.org/10.1016/j.biortech.2015.05.020.
      Costa JAV, Colla LM, Filho PD, Kabke K, Weber A. Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol. 2002;18(7):603-607. https://doi.org/10.1023/A:1016822717583.
      APHA. American public health association (APHA). Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, D.C.: APHA-AWWA-WEF; 1998.
      Camacho Rubio F, Acién Fernández FG, Sánchez Pérez JA, García Camacho F, Molina GE. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng. 1999;62(1):71-86. https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-T.
      Brune DE, Novak JT. The use of carbonate equilibrium chemistry in quantifying algal carbon uptake kinetics. Eur J Appl Microbiol Biotechnol. 1981;13(2):71-76. https://doi.org/10.1007/BF00499691.
      Rosa GM, Moraes L, Souza MRAZ, Costa JAV. Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour Technol. 2016;200:528-534. https://doi.org/10.1016/j.biortech.2015.10.025.
      Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193:265-275.
      Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-356. https://doi.org/10.1021/ac60111a017.
      Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. https://doi.org/10.1111/j.1745-6584.2010.00771.x.
      Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists. 17th ed. Virgínia: AOAC International; 2000.
      Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102(3):3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047.
      Zhang K, Kurano N, Miyachi S. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng. 2002;25(2):97-101. https://doi.org/10.1007/s00449-002-0284-y.
      Duarte JH, Morais EG, Radmann EM, Costa JAV. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol. 2017;234:472-475. https://doi.org/10.1016/j.biortech.2017.03.066.
      Moraes L, Rosa GM, Morillas España A, et al. Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: influence of the CO2 flow rate on the culture performance in tubular photobioreactors. Process Biochem. 2019;76:171-177. https://doi.org/10.1016/j.procbio.2018.10.010.
      Vaz BS, Costa JAV, Morais MG. CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl Biochem Biotechnol. 2016;178(2):418-429. https://doi.org/10.1007/s12010-015-1876-8.
      Xu X, Martin GJO, Kentish SE. Enhanced CO2 bio-utilization with a liquid-liquid membrane contactor in a bench-scale microalgae raceway pond. J CO2 Util. 2019;34:207-214. https://doi.org/10.1016/j.jcou.2019.06.008.
      Chang Y, Wua Z, Bian L, Feng D, Leung YCD. Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energy. 2013;102:427-431. https://doi.org/10.1016/j.apenergy.2012.07.024.
      Ferreira LS, Rodrigues MS, Converti A, Sato S, Carvalho JCM. Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: use of no-cost CO2 from ethanol fermentation. Appl Energy. 2012;92:379-385. https://doi.org/10.1016/j.apenergy.2011.11.019.
      Cohen Z. The Chemicals of Spirulina. In: Vonshak A, ed. Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology (pp. 175-204). London: Taylor & Francis; 1997.
      Belay A, Ota Y, Miyakawa K, Shimamatsu H. Current Knowledge on Potential Health Benefits of Spirulina. J Appl Phycol. 1993;5:235-241.
      Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol. 2011;102(10):6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057.
      Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016;15:59-64. https://doi.org/10.1016/j.algal.2016.02.009.
      Sydney EB, Sturm W, de Carvalho JC, et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101(15):5892-5896. https://doi.org/10.1016/j.biortech.2010.02.088.
      Lari Z, Moradi-kheibari N, Ahmadzadeh H, Abrishamchi P, Moheimani NR, Murry MA. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol. 2016;28(6):3235-3250. https://doi.org/10.1007/s10811-016-0884-6.
      Rodrigues MS, Ferreira LS, Converti A, Sato S, Carvalho JCM. Fed-batch cultivation of Arthrospira (Spirulina) platensis: potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol. 2010;101(12):4491-4498. https://doi.org/10.1016/j.biortech.2010.01.054.
      Vonshak A. Spirulina: growth, physiology and biochemistry. In: Vonshak A, ed. Spirulina Platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology. London: Taylor & Francis; 1997:43-65.
      Zeng X, Guo X, Su G, et al. Harvesting of microalgal biomass. In: Bux F, Chisti Y, eds. Algae biotechnology, green energy and technology. Cham: Springer; 2016:77-89. https://doi.org/10.1007/978-3-319-12334-9_5.
      Costa JAV, Freitas BCB, Rosa GM, Moraes L, Morais MG, Mitchell BG. Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol. 2019;292:121946. https://doi.org/10.1016/j.biortech.2019.121946.
    • Grant Information:
      Finance Code 001 International Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; International Eletrobras CGTEE - Centrais Elétricas Brasileiras S.A.- Companhia de Geração Térmica de Energia Elétrica; International Ministério da Ciência, Tecnologia, Inovações e Comunicações
    • Contributed Indexing:
      Keywords: biomass; carbon source; fixation; membrane; tubular photobioreactor
    • Accession Number:
      142M471B3J (Carbon Dioxide)
    • Publication Date:
      Date Created: 20200229 Date Completed: 20210804 Latest Revision: 20210804
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/btpr.2987
    • Accession Number:
      32108987