Exercise improves metformin 72-h glucose control by reducing the frequency of hyperglycemic peaks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Purpose: To determine the separated and combined effects of metformin and exercise on insulin sensitivity and free-living glycemic control in overweight individuals with prediabetes/type 2 diabetes (T2DM).
      Methods: We recruited 16 adults with BMI of 32.7 ± 4.3 kg m -2 and insulin resistance (HOMA-IR 3.2 ± 0.4) under chronic metformin treatment (1234 ± 465 g day -1 ) enrolled in a high-intensity interval training (HIIT) program. Participants underwent four 72-h experimental trials in a random-counterbalanced order: (1) maintaining their habitual metformin treatment (MET); (2) replacing metformin treatment by placebo (CON); (3) placebo plus two HIIT sessions (EX + CON), and (4) metformin plus two HIIT sessions (MET + EX). We used intermittently scanned continuous glucose monitoring (isCGM) during 72 h in every trial to obtain interstitial fluid glucose area under the curve (IFG AUC ) and the percentage of measurements over 180 mg dL -1 (% IFG PEAKS ). Insulin sensitivity was assessed on the last day of each trial with HOMA-IR index and calculated insulin sensitivity (C SI ) from intravenous glucose tolerance test.
      Results: IFG AUC was lower in MET + EX and MET than in CON (P = 0.011 and P = 0.025, respectively). In addition, IFG AUC was lower in MET + EX than in EX + CON (P = 0.044). %IFG PEAKS were only lower in MET + EX in relation to CON (P = 0.028). HOMA-IR and C SI were higher in CON in comparison with MET + EX (P = 0.011 and P = 0.022, respectively) and MET (P = 0.006 and P < 0.001, respectively). IFG AUC showed a significant correlation with HOMA-IR.
      Conclusion: Intense aerobic exercise in patients with diabetes and prediabetes under metformin treatment reduces free-living 72-h blood hyperglycemic peaks. This may help to prevent the development of cardiovascular complications associated with diabetes.
    • References:
      Menke A, Casagrande S, Geiss L, Cowie CC (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314(10):1021–1029. https://doi.org/10.1001/jama.2015.10029. (PMID: 10.1001/jama.2015.1002926348752)
      Low Wang CC, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus–mechanisms, management, and clinical considerations. Circulation 133(24):2459–2502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194. (PMID: 10.1161/CIRCULATIONAHA.116.022194272973424910510)
      DeFronzo RA, Abdul-Ghani MA (2011) Preservation of beta-cell function: the key to diabetes prevention. J Clin Endocrinol Metab 96(8):2354–2366. https://doi.org/10.1210/jc.2011-0246. (PMID: 10.1210/jc.2011-024621697254)
      American Diabetes A (2019) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42(Suppl 1):S13–S28. https://doi.org/10.2337/dc19-s002. (PMID: 10.2337/dc19-s002)
      Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, Andres R, Saudek C, Edelstein SL, Arakaki R, Murphy MB, Shamoon H, Diabetes Prevention Program Research (2005) Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 54(8):2404–2414. https://doi.org/10.2337/diabetes.54.8.2404. (PMID: 10.2337/diabetes.54.8.240416046308)
      American Diabetes A (2016) Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care 39(Suppl 1):S4–S5. https://doi.org/10.2337/dc16-S003. (PMID: 10.2337/dc16-S003)
      Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR, American Diabetes A, European Association for the Study of D (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35(6):1364–1379. https://doi.org/10.2337/dc12-0413. (PMID: 10.2337/dc12-0413225177363357214)
      Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B, American College of Sports M, American Diabetes A (2010) Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care 33(12):2692–2696. https://doi.org/10.2337/dc10-1548. (PMID: 10.2337/dc10-1548211157712992214)
      Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51(7):2074–2081. (PMID: 10.2337/diabetes.51.7.2074)
      Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81(11):4059–4067. https://doi.org/10.1210/jcem.81.11.8923861. (PMID: 10.1210/jcem.81.11.89238618923861)
      DeFronzo RA (1999) Pharmacologic therapy for type 2 diabetes mellitus. Ann Int Med 131(4):281–303. https://doi.org/10.7326/0003-4819-131-4-199908170-00008. (PMID: 10.7326/0003-4819-131-4-199908170-0000810454950)
      Sharoff CG, Hagobian TA, Malin SK, Chipkin SR, Yu H, Hirshman MF, Goodyear LJ, Braun B (2010) Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals. Am J Physiol Endocrinol Metab 298(4):E815–E823. https://doi.org/10.1152/ajpendo.00517.2009. (PMID: 10.1152/ajpendo.00517.2009200715603774338)
      Malin SK, Gerber R, Chipkin SR, Braun B (2012) Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care 35(1):131–136. https://doi.org/10.2337/dc11-0925. (PMID: 10.2337/dc11-092522040838)
      Ortega JF, Hamouti N, Fernandez-Elias VE, de Prada MV, Martinez-Vizcaino V, Mora-Rodriguez R (2014) Metformin does not attenuate the acute insulin-sensitizing effect of a single bout of exercise in individuals with insulin resistance. Acta Diabetol 51(5):749–755. https://doi.org/10.1007/s00592-014-0580-4. (PMID: 10.1007/s00592-014-0580-424682492)
      Viskochil R, Malin SK, Blankenship JM, Braun B (2017) Exercise training and metformin, but not exercise training alone, decreases insulin production and increases insulin clearance in adults with prediabetes. J Appl Physiol 123(1):243–248. https://doi.org/10.1152/japplphysiol.00790.2016. (PMID: 10.1152/japplphysiol.00790.2016284736135538813)
      Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26. https://doi.org/10.1152/ajpendo.00645.2007. (PMID: 10.1152/ajpendo.00645.200717957034)
      Tura A, Sbrignadello S, Succurro E, Groop L, Sesti G, Pacini G (2010) An empirical index of insulin sensitivity from short IVGTT: validation against the minimal model and glucose clamp indices in patients with different clinical characteristics. Diabetologia 53(1):144–152. https://doi.org/10.1007/s00125-009-1547-9. (PMID: 10.1007/s00125-009-1547-919876614)
      Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H (1988) Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 254(3 Pt 1):E248–E259. (PMID: 3126668)
      Ortega JF, Hamouti N, Fernandez-Elias VE, Mora-Rodriguez R (2014) Comparison of glucose tolerance tests to detect the insulin sensitizing effects of a bout of continuous exercise. Appl Physiol Nutr Metab 39(7):787–792. https://doi.org/10.1139/apnm-2013-0507. (PMID: 10.1139/apnm-2013-050724971679)
      American Diabetes A (2019) 6. Glycemic targets: standards of medical care in diabetes-2019. Diabetes Care 42(Suppl 1):S61–S70. https://doi.org/10.2337/dc19-s006. (PMID: 10.2337/dc19-s006)
      Lachin JM, White NH, Hainsworth DP, Sun W, Cleary PA, Nathan DM (2015) Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes 64(2):631–642. https://doi.org/10.2337/db14-0930. (PMID: 10.2337/db14-093025204977)
      Erickson ML, Little JP, Gay JL, McCully KK, Jenkins NT (2017) Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy. J Appl Physiol 123(2):444–450. https://doi.org/10.1152/japplphysiol.00213.2017. (PMID: 10.1152/japplphysiol.00213.201728522762)
      Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S (2015) The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther 17(11):787–794. https://doi.org/10.1089/dia.2014.0378. (PMID: 10.1089/dia.2014.0378261716594649725)
      Hoss U, Budiman ES (2017) Factory-calibrated continuous glucose sensors: the science behind the technology. Diabetes Technol Ther 19(S2):S44–S50. https://doi.org/10.1089/dia.2017.0025. (PMID: 10.1089/dia.2017.002528541139)
      Yajima T, Takahashi H, Yasuda K (2019) Comparison of interstitial fluid glucose levels obtained by continuous glucose monitoring and flash glucose monitoring in patients with type 2 diabetes mellitus undergoing hemodialysis. J Diabetes Sci Technol. https://doi.org/10.1177/1932296819882690. (PMID: 10.1177/193229681988269031625413)
      Jangam S, Dunn T, Xu Y, Hayter G, Ajjan RA (2019) Flash glucose monitoring improves glycemia in higher risk patients: a longitudinal, observational study under real-life settings. BMJ Open Diabetes Res Care 7(1):e000611. https://doi.org/10.1136/bmjdrc-2018-000611. (PMID: 10.1136/bmjdrc-2018-000611311146986501858)
      Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. (PMID: 10.1007/BF00280883)
      Marfella R, Esposito K, Giunta R, Coppola G, De Angelis L, Farzati B, Paolisso G, Giugliano D (2000) Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation 101(19):2247–2251. https://doi.org/10.1161/01.cir.101.19.2247. (PMID: 10.1161/01.cir.101.19.224710811590)
      Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D (2001) Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest 108(4):635–636. https://doi.org/10.1172/JCI13727. (PMID: 10.1172/JCI1372711518739209408)
      Marfella R, Nappo F, De Angelis L, Siniscalchi M, Rossi F, Giugliano D (2000) The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia 43(5):571–575. https://doi.org/10.1007/s001250051345. (PMID: 10.1007/s00125005134510855531)
      Bogdanovic J, Asanin M, Krljanac G, Lalic NM, Jotic A, Stankovic S, Rajkovic N, Stosic L, Rasulic I, Milin J, Popovic D, Bogdanovic L, Lalic K (2019) Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography. Cardiovasc Diabetol 18(1):68. https://doi.org/10.1186/s12933-019-0876-3. (PMID: 10.1186/s12933-019-0876-3311598586545629)
      Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A, Boniface H (2002) Morning hyperglycemic excursions: a constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. Diabetes Care 25(4):737–741. https://doi.org/10.2337/diacare.25.4.737. (PMID: 10.2337/diacare.25.4.73711919134)
      Praet SF, Manders RJ, Meex RC, Lieverse AG, Stehouwer CD, Kuipers H, Keizer HA, van Loon LJ (2006) Glycaemic instability is an underestimated problem in Type II diabetes. Clin Sci (Lond) 111(2):119–126. https://doi.org/10.1042/CS20060041. (PMID: 10.1042/CS20060041)
      Huang T, Lu C, Schumann M, Le S, Yang Y, Zhuang H, Lu Q, Liu J, Wiklund P, Cheng S (2018) Timing of exercise affects glycemic control in type 2 diabetes patients treated with metformin. J Diabetes Res 2018:2483273. https://doi.org/10.1155/2018/2483273. (PMID: 10.1155/2018/2483273297853995896215)
      Mora-Rodriguez R, Ortega JF, Ramirez-Jimenez M, Moreno-Cabanas A, Morales-Palomo F (2019) Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes Metab. https://doi.org/10.1016/j.diabet.2019.05.004. (PMID: 10.1016/j.diabet.2019.05.00431158474)
      Ortega JF, Fernandez-Elias VE, Hamouti N, Pallares JG, Mora-Rodriguez R (2015) Higher insulin-sensitizing response after sprint interval compared to continuous exercise. Int J Sports Med 36(3):209–214. https://doi.org/10.1055/s-0034-1389942. (PMID: 10.1055/s-0034-138994225376729)
      Magkos F, Tsekouras Y, Kavouras SA, Mittendorfer B, Sidossis LS (2008) Improved insulin sensitivity after a single bout of exercise is curvilinearly related to exercise energy expenditure. Clin Sci (Lond) 114(1):59–64. https://doi.org/10.1042/cs20070134. (PMID: 10.1042/cs20070134)
      DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30(12):1000–1007. https://doi.org/10.2337/diab.30.12.1000. (PMID: 10.2337/diab.30.12.10007030826)
      Bloomgarden ZT (2006) Measures of insulin sensitivity. Clin Lab Med 26(3):611–633. https://doi.org/10.1016/j.cll.2006.06.007. (PMID: 10.1016/j.cll.2006.06.00716938587)
    • Grant Information:
      DEP-2017-83244-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
    • Contributed Indexing:
      Keywords: Continuous glucose monitoring; Exercise; Hyperglycemia; Insulin sensitivity; Metformin; Type 2 diabetes mellitus
    • Accession Number:
      0 (Blood Glucose)
      9100L32L2N (Metformin)
      IY9XDZ35W2 (Glucose)
    • Publication Date:
      Date Created: 20200206 Date Completed: 20200820 Latest Revision: 20220601
    • Publication Date:
      20240513
    • Accession Number:
      10.1007/s00592-020-01488-7
    • Accession Number:
      32020414