Menu
×
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner).
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Wang B;Wang B;Wang B; Wei J; Wei J; Wang Y; Wang Y; Chen L; Chen L; Liang G; Liang G
- Source:
Archives of insect biochemistry and physiology [Arch Insect Biochem Physiol] 2020 May; Vol. 104 (1), pp. e21661. Date of Electronic Publication: 2020 Feb 03.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley Country of Publication: United States NLM ID: 8501752 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-6327 (Electronic) Linking ISSN: 07394462 NLM ISO Abbreviation: Arch Insect Biochem Physiol Subsets: MEDLINE
- Publication Information: Publication: New York, NY : Wiley
Original Publication: New York : Alan R. Liss, c1983- - Subject Terms: Insecticides/*pharmacology ; Lipocalins/*metabolism ; Moths/*drug effects ; Moths/*physiology; Animals ; Bacterial Proteins/metabolism ; Bacterial Proteins/pharmacology ; Endotoxins/metabolism ; Endotoxins/pharmacology ; Hemolysin Proteins/metabolism ; Hemolysin Proteins/pharmacology ; Insect Proteins ; Insecticide Resistance/genetics ; Insecticides/metabolism ; Moths/metabolism
- Abstract: Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (K
d = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.
(© 2020 Wiley Periodicals, Inc.) - References: Angelucci, C., Barrett-Wilt, G. A., Hunt, D. F., Akhurst, R. J., East, P. D., Gordon, K. H., & Campbell, P. M. (2008). Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding the delta-endotoxin, Cry1Ac of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 38, 685-696.
Atsumi, S., Miyamoto, K., Yamamoto, K., Narukawa, J., Kawai, S., Sezutsu, H., & Noda, H. (2012). Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 109(25), E1591-E1598.
Baxter, S. W., Badenes-Pérez, F. R., Morrison, A., Vogel, H., Crickmore, N., Kain, W., … Jiggins, C. D. (2011). Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189, 675-679.
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Brévault, T., Heuberger, S., Zhang, M., Ellerskirk, C., Ni, X., Masson, L., … Carrière, Y. (2013). Potential shortfall of pyramided transgenic cotton for insect resistance management. Proceedings of the National Academy of Sciences of the United States of America, 110, 5806-5811.
Campbell, P. M., Cao, A. T., Hines, E. R., East, P. D., & Gordon, K. H. J. (2008). Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 38, 950-958.
Cao, G., Zhang, L., Liang, G., Li, X., & Wu, K. (2013). Involvement of nonbinding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac. Journal of Economic Entomolog, 106, 2514-2521.
Chen, W., Liu, C., Xiao, Y., Zhang, D., Zhang, Y., Li, X., … Wu, K. (2015). A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS One, 10, e0126288.
Ferré, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501-533.
Flores-Escobar, B., Rodríguez-Magadan, H., Bravo, A., Soberón, M., & Gómez, I. (2013). Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Applied and Environmental Microbiology, 79, 4543-4550.
Flower, D. R., North, A. C. T., & Sansom, C. E. (2000). The lipocalin protein family: Structural and sequence overview. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1482, 9-24.
Gahan, L. J., Gould, F., & Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857-860.
Gahan, L. J., Pauchet, Y., Vogel, H., & Heckel, D. G. (2010). An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics, 6, e1001248.
Gould, F. (1998). Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annual Review of Entomology, 43, 701-726.
Griffitts, J. S., Haslam, S. M., Yang, T., Garczynski, S. F., Mulloy, B., Morris, H., … Aroian, R. V. (2005). Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 37, 922-925.
Heckel, D. G. (2012). Insecticide resistance after silent spring. Science, 337, 1612-1614.
Hossain, D. M., Shitomi, Y., Moriyama, K., Higuchi, M., Hayakawa, T., Mitsui, T., … Hori, H. (2004). Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Applied and Environmental Microbiology, 70, 4604-4612.
Hossain, D. M., Shitomi, Y., Nanjo, Y., Takano, D., Nishiumi, T., Hayakawa, T., … Hori, H. (2005). Localization of a novel 252-kDa plasma membrane protein that binds Cry1A toxins in the midgut epithelia of Bombyx mori. Applied Entomology and Zoology, 40, 125-135.
Hu, X., Chen, L., Xiang, X., Yang, R., Yu, S., & Wu, X. (2012). Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Molecular Biology Reports, 39, 3427-3434.
Jakka, S. R., Gong, L., Hasler, J., Banerjee, R., Sheets, J. J., Narva, K., … Jurat-Fuentes, J. L. (2016). Field-evolved mode 1 resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut alkaline phosphatase expression. Applied and Environmental Microbiology, 82, 1023-1034.
James, C. (2017). Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years (Brief No. 53), Ithaca, NY: ISAAA.
Jenkins, J. L., & Dean, D. H. (2000). Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. Genetic Engineering, 22, 33-54.
Jin, L., Wei, Y., Zhang, L., Yang, Y., Tabashnik, B. E., & Wu, Y. (2013). Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evolutionary Application, 6, 1222-1235.
Jurat-Fuentes, J. L., Karumbaiah, L., Jakka, S. R., Ning, C., Liu, C., Wu, K., … Adang, M. (2011). Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One, 6, e17606.
Liu, C., Gao, Y., Ning, C., Wu, K., Oppert, B., & Guo, Y. (2010). Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera. Journal of Insect Physiology, 56, 718-724.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCt method. Methods, 25, 402-408.
Lu, Y., Wu, K., Jiang, Y., Guo, Y., & Desneux, N. (2012). Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 487, 362-365.
Ma, W., Zhang, Z., Peng, C., Wang, X., Li, F., & Lin, Y. (2012). Correction: Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker). PLoS One, 7, 0038151.
Mauchamp, B., Royer, C., Garel, A., Jalabert, A., Da Rocha, M., Grenier, A. M., … Chavancy, G. (2006). Polycalin (chlorophyllid A binding protein): A novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochemistry and Molecular Biology, 36, 623-633.
Nagamatsu, Y., Toda, S., Yamaguchi, F., Ogo, M., Kogure, M., Nakamura, M., … Katsumoto, T. (1998). Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal Cry1A(a) toxin. Bioscience, Biotechnology, and Biochemistry, 62, 718-726.
Pandian, G. N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., … Hori, H. (2008). Bombyx mori midgut membrane protein p252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Applied and Environmental Microbiology, 74, 1324-1331.
Pandian, G. N., Ishikawa, T., Vaijayanthi, T., Hossain, D. M., Yamamoto, S., Nishiumi, T., … Hori, H. (2010). Formation of macromolecule complex with Bacillus thuringiensis Cry1A toxins and chlorophyllide binding 252-kDa lipocalin-like protein locating on Bombyx mori midgut membrane. Journal of Membrane Biology, 237, 125-136.
Pardo-López, L., Soberon, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37, 3-22.
Peng, D., Xu, X., Ye, W., Yu, Z., & Sun, M. (2010). Helicoverpa armigera, cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Applied Microbiology and Biotechnology, 85, 1033-1040.
Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255-281.
Qiu, L., Hou, L., Zhang, B., Liu, L., Li, B., Deng, P., … Lei, C. (2015). Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Journal of Invertebrate Pathology, 127, 47-53.
Qiu, L., Zhang, B., Liu, L., Ma, W., Wang, X., Lei, C., & Chen, L. (2017). Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Scientific Reports, 7, 40222.
Shelton, A. M., Zhao, J. Z., & Roush, R. T. (2002). Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants Annual Review of Entomology, 47, 845-881.
Shi, G., Chavas, J. P., & Lauer, J. (2013). Commercialized transgenic traits, maize productivity and yield risk. Nature Biotechnology, 31, 111-114.
Stevens, T., Song, S., Bruning, J. B., Choo, A., & Baxter, S. W. (2017). Expressing a moth ABCC2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochemistry and Molecular Biology, 80, 61-70.
Tabashnik, B. E. (1994). Evolution of Resistance to Bacillus Thuringiensis. Annual Review of Entomology, 39, 47-79.
Tabashnik, B. E., & Carrière, Y. (2017). Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 35, 926-935.
Tabashnik, B. E., Gassmann, A. J., Crowder, D. W., & Carriere, Y. (2008). Insect resistance to Bt crops: Evidence versus theory. Nature Biotechnology, 26, 199-202.
Tabashnik, B. E., Liu, Y. B., Dennehy, T. J., Sims, M. A., Sisterson, M. S., Biggs, R. W., … Carriere, Y. (2002). Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 95, 1018-1026.
Tabashnik, B. E., Sisterson, M. S., Ellsworth, P. C., Dennehy, T. J., Antilla, L., Liesner, L., … Carrière, Y. (2010). Suppressing resistance to Bt cotton with sterile insect releases. Nature Biotechnology, 28, 1304-1307.
Tabashnik, B. E., Wu, K., & Wu, Y. (2012). Early detection of field-evolved resistance to Bt cotton in China: Cotton bollworm and pink bollworm. Journal of Invertebrate Pathology, 110, 301-306.
Tiewsiri, K., & Wang, P. (2011). Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proceedings of the National Academy of Sciences of the United States of America, 108, 14037-14042.
Wang, B., Wang, Y., Wei, J., Liu, C., Chen, L., Khaing, M. M., … Liang, G. (2019). Polycalin is involved in the action mechanism of Cry2Aa toxin in Helicoverpa armigera (Hübner). Journal of Integrative Agriculture, 18, 627-635.
Wang, G., Wu, K., Liang, G., & Guo, Y. (2005). Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Science in China, 48, 346-356.
Wang, J., Wang, H., Liu, S., Liu, L., & Wu, Y. (2017). CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins Insect Biochemistry and Molecular Biology, 87, 147-153.
Wei, J., Liang, G., Wang, B., Zhong, F., Chen, L., Khaing, M. M., … Tabashnik, B. E. (2016). Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm. PLoS One, 11, e0156560.
Wei, J., Yang, S., Chen, L., Liu, X., Du, M., An, S., & Liang, G. (2018). Transcriptomic responses to different Cry1Ac selection stresses in Helicoverpa armigera. Frontiers in Physiology, 9, 1653.
Wei, J., Zhang, M., Liang, G., & Li, X. (2018). ALP2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Insect Molecular Biology, 28, 372-379. https://doi.org/10.1111/imb.12556.
Wei, J., Zhang, M., Liang, G., Wu, K., Guo, Y., Ni, X., & Li, X. (2016). APN1 is the functional receptor of Cry1Ac, but not Cry2Ab in Helicoverpa zea. Scientific Reports, 6, 19179.
Wei, J., Zhang, Y., & An, S. (2019). The progress in insect cross-resistance among Bacillus thuringiensis toxins. Archive of Insect Biochemistry and Physiology, 102, https://doi.org/10.1002/arch.21547.
Wolfersberger, M. G. (1993). Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the gypsy moth (Lymantria Dispar). Archives of Insect Biochemistry and Physiology, 24, 139-147.
Wu, K., Lu, Y., Feng, H., Jiang, Y., & Zhao, J. (2008). Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 321, 1676-1678.
Xiao, Y., Liu, K., Zang, D., Gong, L., He, F., Soberón, M., … Wu, K. (2016). Resistance to Bacillus thuringiensis mediated by an ABC transporter mutation increases susceptibility to toxins from other bacteria in an invasive insect. PLoS Pathogens, 12, e1005450.
Xiao, Y., Zhang, T., Liu, C., Heckel, D. G., Li, X., Tabashnik, B. E., & Wu, K. (2014). Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Scientific Reports, 4, 6184.
Xie, R., Zhuang, M., Ross, L. S., Gomez, I., Oltean, D. I., Bravo, A., … Gill, S. S. (2005). Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Journal of Biological Chemistry, 280, 8416-8425.
Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71, 948-954.
Yang, Y., Zhu, Y., Ottea, J., Husseneder, C., Leonard, B. R., Abel, C., … Huang, F. (2011). Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with Cry1Ab resistance in the sugarcane borer Diatraea saccharalis. PLoS One, 6, e25783.
Zhang, D., Xiao, Y., Chen, W., Lu, Y., & Wu, K. (2018). Field monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) Cry1Ac insecticidal protein resistance in China (2005-2017) Pest Management Science, 75, 753-759.
Zhang, S., Cheng, H., Gao, Y., Wang, G., Liang, G., & Wu, K. (2009). Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1AC toxin. Insect Biochemistry and Molecular Biology, 39, 421-429.
Zhou, Z., Wang, Z., Liu, Y., Liang, G., Shu, C., Song, F., … Zhang, J. (2016). Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. MicrobiologyOpen, 5, 659-669. - Grant Information: 2016ZX08011-002 Key Project for Breeding Genetically Modified Organisms; 31621064 National Natural Science Foundation of China
- Contributed Indexing: Keywords: Helicoverpa armigera; functional receptor; polycalin; resistance mechanisms
- Accession Number: 0 (Bacterial Proteins)
0 (Endotoxins)
0 (Hemolysin Proteins)
0 (Insect Proteins)
0 (Insecticides)
0 (Lipocalins) - Publication Date: Date Created: 20200204 Date Completed: 20200710 Latest Revision: 20200710
- Publication Date: 20231215
- Accession Number: 10.1002/arch.21661
- Accession Number: 32011765
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.