Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Walter De Gruyter Country of Publication: Germany NLM ID: 9700112 Publication Model: Print Cited Medium: Internet ISSN: 1437-4315 (Electronic) Linking ISSN: 14316730 NLM ISO Abbreviation: Biol Chem Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Walter De Gruyter
      Original Publication: Berlin ; New York : W. De Gruyter, c1996-
    • Subject Terms:
    • Abstract:
      Rac1 is a ubiquitously expressed Rho GTPase and an important regulator of the actin cytoskeleton. Its splice variant Rac1b exhibits a 19-amino acid (aa) in-frame insertion and is predominantly active. Both proteins were described in tumorigenesis or metastasis. We investigated the contribution of Rac1 and Rac1b to tumor progression of human non-small-cell lung adenocarcinoma (NSCLA). Rac1 protein was present in 8/8 NSCLA cell lines analyzed, whereas Rac1b was expressed in only 6/8. In wound-healing assays, enhanced green fluorescence protein (EGFP)-Rac1 slightly decreased cell migration, whereas proliferation was increased in both, Rac1- and Rac1b-expressing cells. In the in vivo chorioallantoic invasion model, EGFP-Rac1-expressing cells formed more invasive tumors compared to EGFP-Rac1b. This increased invasiveness correlated with enhanced phosphorylation of p38α, AKT and glycogen synthase kinase 3β (GSK3β), and activation of serum response- and Smad-dependent gene promoters by Rac1. In contrast, Rac1b solely activated the mitogen-activated protein kinase (MAPK) JNK2, together with TCF/LEF1- and nuclear factor kappa B (NFκB)-responsive gene reporters. Rac1b, as Rac1, phosphorylated p38α, AKT and GSK3β. Knockdown of the splicing factor epithelial splicing regulatory protein 1 (ESRP1), which mediates out-splicing of exon 3b from Rac1 pre-messenger RNA, resulted in increased Rac1b messenger RNA (mRNA) and suppression of the epithelial-mesenchymal transition (EMT)-associated transcription factor ZEB1. Our data demonstrate different signaling and functional activities of Rac1 and Rac1b and an important role for Rac1 in lung cancer metastasis.
    • References:
      Akunuru, S., Palumbo, J., Zhai, Q.J., and Zheng, Y. (2011). Rac1 targeting suppresses human non-small cell lung adenocarcinoma cancer stem cell activity. PLoS One 6, e16951.
      Bar-Sagi, D. and Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227–238.
      Chen, M. and Manley, J.L. (2009). Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741.
      Dai, B., Zhang, X., Shang, R., Wang, J., Yang, X., Zhang, H., Liu, Q., Wang, D., Wang, L., and Dou, K. (2018). Blockade of ARHGAP11A reverses malignant progress via inactivating Rac1B in hepatocellular carcinoma. Cell. Commun. Signal. 16, 99.
      Dauphin, M., Barbe, C., Lemaire, S., Nawrocki-Raby, B., Lagonotte, E., Delepine, G., Birembaut, P., Gilles, C., and Polette, M. (2013). Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas. Lung Cancer (Amsterdam) 81, 117–122.
      Dittmar, K.A., Jiang, P., Park, J.W., Amirikian, K., Wan, J., Shen, S., Xing, Y., and Carstens, R.P. (2012). Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol. Cell. Biol. 32, 1468–1482.
      Dreissigacker, U., Mueller, M.S., Unger, M., Siegert, P., Genze, F., Gierschik, P., and Giehl, K. (2006). Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell. Signal. 18, 1156–1168.
      Esufali, S., Charames, G.S., Pethe, V.V., Buongiorno, P., and Bapat, B. (2007). Activation of tumor-specific splice variant Rac1b by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res. 67, 2469–2479.
      Fiegen, D., Haeusler, L.-C., Blumenstein, L., Herbrand, U., Dvorsky, R., Vetter, I.R., and Ahmadian, M.R. (2004). Alternative splicing of Rac1 generates Rac1b, a self-activating GTPase. J. Biol. Chem. 279, 4743–4749.
      Gastonguay, A., Berg, T., Hauser, A.D., Schuld, N., Lorimer, E., and Williams, C.L. (2012). The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol. Ther. 13, 647–656.
      Hage, B., Meinel, K., Baum, I., Giehl, K., and Menke, A. (2009). Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells. Cell. Commun. Signal. 7, 23.
      Hall, A. (2005). Rho GTPases and the control of cell behaviour. J. Biochem. Soc. 7, 891–895.
      Havel, L.S., Kline, E.R., Salgueiro, A.M., and Marcus, A.I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene 34, 1979–1990.
      He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da, C.L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.
      Hill, C.S., Wynne, J., and Treisman, R. (1995). The Rho family GTPases RhoA, Racl, and CDC42Hsregulate transcriptional activation by SRF. Cell 81, 1159–1170.
      Hofer, M.D., Menke, A., Genze, F., Gierschik, P., and Giehl, K. (2004). Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br. J. Cancer 90, 455–462.
      Ishii, H., Saitoh, M., Sakamoto, K., Kondo, T., Katoh, R., Tanaka, S., Motizuki, M., Masuyama, K., and Miyazawa, K. (2014). Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J. Biol. Chem. 289, 27386–27399.
      Jonkman, J.E.N., Cathcart, J.A., Xu, F., Bartolini, M.E., Amon, J.E., Stevens, K.M., and Colarusso, P. (2014). An introduction to the wound healing assay using live-cell microscopy. Cell Adh. Migr. 8, 440–451.
      Jordan, P., Brazao, R., Boavida, M.G., Gespach, C., and Chastre, E. (1999). Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18, 6835–6839.
      Larsen, J.E., Nathan, V., Osborne, J.K., Farrow, R.K., Deb, D., Sullivan, J.P., Dospoy, P.D., Augustyn, A., Hight, S.K., Sato, M., et al. (2016). ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J. Clin. Invest. 126, 3219–3235.
      Li, G., Ying, L., Wang, H., Wei, S.S., Chen, J., Chen, Y.H., Xu, W.P., Jie, Q.Q., Zhou, Q., Li, Y.G., et al. (2016). Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways. Oncotarget 7, 17970–17985.
      Li, L., Qi, L., Qu, T., Liu, C., Cao, L., Huang, Q., Song, W., Yang, L., Qi, H., Wang, Y., et al. (2018). Epithelial Splicing Regulatory Protein 1 inhibits the invasion and metastasis of lung adenocarcinoma. Am. J. Pathol. 188, 1882–1894.
      Matos, P., Collard, J.G., and Jordan, P. (2003). Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling. J. Biol. Chem. 278, 50442–50448.
      Mehner, C., Miller, E., Khauv, D., Nassar, A., Oberg, A.L., Bamlet, W.R., Zhang, L., Waldmann, J., Radisky, E.S., Crawford, H.C., et al. (2014). Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma. Mol. Cancer Res. 12, 1430.
      Melzer, C., Hass, R., von der Ohe, J., Lehnert, H., and Ungefroren, H. (2017). The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell. Commun. Signal. 15, 19.
      Minden, A., Lin, A., Claret, F.-X., Abo, A., and Karin, M. (1995). Selective activation of the JNK signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157.
      Nakashima, H., Hashimoto, N., Aoyama, D., Kohnoh, T., Sakamoto, K., Kusunose, M., Imaizumi, K., Takeyama, Y., Sato, M., Kawabe, T., et al. (2012). Involvement of the transcription factor twist in phenotype alteration through epithelial-mesenchymal transition in lung cancer cells. Mol. Carcinogenesis 51, 400–410.
      Nimnual, A.S., Taylor, L.J., Nyako, M., Jeng, H.H., and Bar-Sagi, D. (2010). Perturbation of cytoskeleton dynamics by the opposing effects of Rac1 and Rac1b. Small GTPases 1, 89–97.
      Nobes, C.D. and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.
      Ridley, A.J. (2001). Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722.
      Schmalhofer, O., Brabletz, S., and Brabletz, T. (2009). E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151–166.
      Schnelzer, A., Prechtel, D., Knaus, U., Dehne, K., Gerhard, M., Graeff, H., Harbeck, N., Schmitt, M., and Lengyel, E. (2000). Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19, 3013.
      Shapiro, I.M., Cheng, A.W., Flytzanis, N.C., Balsamo, M., Condeelis, J.S., Oktay, M.H., Burge, C.B., and Gertler, F.B. (2011). An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218.
      Siegel, R.L., Miller, K.D., and Jemal, A. (2017). Cancer statistics, 2017. Cancer J. Clinicians 67, 7–30.
      Singh, A., Karnoub, A.E., Palmby, T.R., Lengyel, E., Sondek, J., and Der, C.J. (2004). Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23, 9369–9380.
      Stähle, M., Veit, C., Bachfischer, U., Schierling, K., Skripczynski, B., Hall, A., Gierschik, P., and Giehl, K. (2003). Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J. Cell Sci. 116, 3835–3846.
      Stallings-Mann, M.L., Waldmann, J., Zhang, Y., Miller, E., Gauthier, M.L., Visscher, D.W., Downey, G.P., Radisky, E.S., Fields, A.P., and Radisky, D.C. (2012). Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression. Sci. Transl. Med. 4, 142ra195.
      Stemmler, M.P., Eccles, R.L., Brabletz, S., and Brabletz, T. (2019). Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112.
      Tetsu, O. and McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426.
      Ungefroren, H., Sebens, S., Giehl, K., Helm, O., Groth, S., Fändrich, F., Röcken, C., Sipos, B., Lehnert, H., and Gieseler, F. (2014). Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling. Oncotarget 5, 277–290.
      Ungefroren, H., Otterbein, H., Fiedler, C., Mihara, K., Hollenberg, D.M., Gieseler, F., Lehnert, H., and Witte, D. (2019). RAC1B suppresses TGF-β1-dependent cell migration in pancreatic carcinoma cells through inhibition of the TGF-β type I receptor ALK5. Cancers 11, 691–701.
      Visvikis, O., Lorès, P., Boyer, L., Chardin, P., Lemichez, E., and Gacon, G. (2008). Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys147 through a JNK-regulated process. FEBS J. 275, 386–396.
      Warzecha, C.C., Jiang, P., Amirikian, K., Dittmar, K.A., Lu, H., Shen, S., Guo, W., Xing, Y., and Carstens, R.P. (2010). An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 29, 3286–3300.
      Wolpert, L., Smith, J.C., Hall, A., and Nobes, C.D. (2000). Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 965–970.
      Wrana, J.L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X.F., and Massague, J. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014.
      Yae, T., Tsuchihashi, K., Ishimoto, T., Motohara, T., Yoshikawa, M., Yoshida, G.J., Wada, T., Masuko, T., Mogushi, K., Tanaka, H., et al. (2012). Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat. Commun. 3, 883.
      Zeisberg, M. and Neilson, E.G. (2009). Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437.
      Zhou, C., Licciulli, S., Avila, J.L., Cho, M., Troutman, S., Jiang, P., Kossenkov, A.V., Showe, L.C., Liu, Q., Vachani, A., et al. (2013). The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. Oncogene 32, 903–909.
      Zhou, Y., Liao, Q., Han, Y., Chen, J., Liu, Z., Ling, H., Zhang, J., Yang, W., Oyang, L., Xia, L., et al. (2016). Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer. J. Cancer 7, 2100–2109.
      Zondag, G.C.M., Evers, E.E., ten Klooster, J.P., Janssen, L., van der Kammen, R.A., and Collard, J.G. (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–781.
    • Contributed Indexing:
      Keywords: NSCLC; Rac1 signaling; Rho GTPases; cell migration; epithelial-to-mesenchymal transition; lung cancer metastasis; tumor invasion
    • Accession Number:
      0 (RAC1 protein, human)
      0 (RNA, Messenger)
      EC 3.6.5.2 (rac1 GTP-Binding Protein)
    • Publication Date:
      Date Created: 20191208 Date Completed: 20210624 Latest Revision: 20221026
    • Publication Date:
      20221213
    • Accession Number:
      10.1515/hsz-2019-0329
    • Accession Number:
      31811797