Type 2 diabetes-associated polymorphisms correlate with SIRT1 and TGF-β1 gene expression.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 0416661 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-1809 (Electronic) Linking ISSN: 00034800 NLM ISO Abbreviation: Ann Hum Genet Subsets: MEDLINE
    • Publication Information:
      Publication: <2010-> : Oxford : Wiley-Blackwell
      Original Publication: Oxford : Blackwell
    • Subject Terms:
    • Abstract:
      The polymorphisms rs3758391 and rs1800470 located in SIRT1 and TGF-β1 have been associated with type 2 diabetes in different populations but its functional effect is not clear. In this study, we evaluated their effect on the expression of SIRT1 and TGF-β1 in peripheral blood as well as their participation in the formation of DNA-protein complexes in a pancreas-derived cell line. It has been described that SIRT1 and TGF-β1 participate in cell growth and regulation of production and secretion of insulin in the pancreas. Anthropometric and biochemical profiles of 127 adults were measured. Genotypes for rs3758391 and rs1800470 were determined using TaqMan assays. Expression analysis of SIRT1 and TGF-β1 were performed using real-time PCR. Gene expression of these genes increased 1.8 ± 0.6- and 1.3 ± 0.6-fold in patients carrying the TT genotype of rs3758391 and rs1800470 when compared to carriers of the CC genotype. Then, we tested whether these single-nucleotide polymorphisms (SNPs) (and rs932658, which is in linkage disequilibrium with rs3758391) are located in regulatory DNA-protein binding sites by electrophoretic mobility shift assays using nuclear extract from the pancreas-derived cell line BxPC-3. The electrophoretic mobility shift assay showed no binding of nuclear proteins to DNA. In conclusion, the genotypes of rs3758391 and rs1800470 are associated with modifications in the expression of the genes SIRT1 and TGF-β1, respectively, but none of the tested SNPs are located in regulatory DNA-protein binding sites.
      (© 2019 John Wiley & Sons Ltd/University College London.)
    • References:
      Aguilar-Salinas, C. A., Tusie-Luna, T., & Pajukanta, P. (2014). Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia. Metabolism, 63(7), 887-894. Retrieved from https://doi.org/10.1016/j.metabol.2014.03.012.
      American Diabetes Association (2018). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care, 41(Supplement 1), S13-S27.
      Barroso, I., & McCarthy, M. I. (2019). The genetic basis of metabolic disease. Cell, 177(1), 146-161. Retrieved from https://doi.org/10.1016/j.cell.2019.02.024.
      Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., … Guarente, L. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biology, 4(2), e31. Retrieved from https://doi.org/10.1371/journal.pbio.0040031.
      Consiglio, C. R., Juliana da Silveira, S., Monticielo, O. A., Xavier, R. M., Brenol, J. C., & Chies, J. A. (2014). SIRT1 promoter polymorphisms as clinical modifiers on systemic lupus erythematosus. Molecular Biology Reports, 41(7), 4233-4239. Retrieved from https://doi.org/10.1007/s11033-014-3294-3.
      Cruz, M., Fragoso, J. M., Alvarez-Leon, E., Escobedo-de-la-Pena, J., Valladares, A., Juarez-Cedillo, T., … Vargas-Alarcon, G. (2013). The TGF-B1 and IL-10 gene polymorphisms are associated with risk of developing silent myocardial ischemia in the diabetic patients. Immunology Letters, 156(1-2), 18-22. Retrieved from https://doi.org/10.1016/j.imlet.2013.09.007.
      Cruz, M., Valladares-Salgado, A., Garcia-Mena, J., Ross, K., Edwards, M., Angeles-Martinez, J., … Kumate, J. (2010). Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes Metabolism Research and Reviews, 26(4), 261-270. Retrieved from https://doi.org/10.1002/dmrr.1082.
      Dhawan, S., Dirice, E., Kulkarni, R. N., & Bhushan, A. (2016). Inhibition of TGF-β signaling promotes human pancreatic β-cell replication. Diabetes, 65(5), 1208-1218. Retrieved from https://doi.org/10.2337/db15-1331.
      Doyle, K. P., Cekanaviciute, E., Mamer, L. E., & Buckwalter, M. S. (2010). TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. Journal of Neuroinflammation, 7, 62-62. Retrieved from https://doi.org/10.1186/1742-2094-7-62.
      Dragicevic, S., Petrovic-Stanojevic, N., & Nikolic, A. (2016). TGFB1 gene promoter polymorphisms in Serbian asthmatics. Advances in Clinical and Experimental Medicine, 25(2), 273-278. Retrieved from https://doi.org/10.17219/acem/32211.
      Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., … Metcalfe, J. C. (2003). A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Research, 63(10), 2610.
      El-Sherbini, S. M., Shahen, S. M., Mosaad, Y. M., Abdelgawad, M. S., & Talaat, R. M. (2013). Gene polymorphism of transforming growth factor-β1 in Egyptian patients with type 2 diabetes and diabetic nephropathy. Acta Biochimica et Biophysica Sinica, 45(4), 330-338. Retrieved from https://doi.org/10.1093/abbs/gmt003.
      Falkenberg, V. R., Whistler, T., Murray, J. R., Unger, E. R., & Rajeevan, M. S. (2011). Identification of phosphoglycerate kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA. BMC Research Notes, 4, 324.
      Fragoso, J. M., Martinez-Rios, M. A., Alvarez-Leon, E., Vallejo, M., Pena-Duque, M. A., Posadas-Sanchez, R., … Vargas-Alarcon, G. (2012). The T29C polymorphism of the transforming growth factor-β1 (TGF-β1) gene is associated with genetic susceptibility to acute coronary syndrome in Mexican patients. Cytokine, 58(3), 380-383. Retrieved from https://doi.org/10.1016/j.cyto.2012.03.004.
      Hathaway, C. K., Gasim, A. M., Grant, R., Chang, A. S., Kim, H. S., Madden, V. J., … Kakoki, M. (2015). Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proceedings of the National Academy of Science, 112(18), 5815-5820. Retrieved from https://doi.org/10.1073/pnas.1504777112.
      Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews. Molecular Cell Biology, 13(4), 225-238. Retrieved from https://doi.org/10.1038/nrm3293.
      Hu, Y., Wang, L., Chen, S., Liu, X., Li, H., Lu, X., … Gu, D. (2015). Association between the SIRT1 mRNA expression and acute coronary syndrome. Journal of Atherosclerosis and Thrombosis, 22(2), 165-182. Retrieved from https://doi.org/10.5551/jat.24844.
      Jin, J., Iakova, P., Jiang, Y., Medrano, E. E., & Timchenko, N. A. (2011). The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology, 54(3), 989-998. Retrieved from https://doi.org/10.1002/hep.24471.
      Kim, S. J., Glick, A., Sporn, M. B., & Roberts, A. B. (1989). Characterization of the promoter region of the human transforming growth factor-β1 gene. Journal of Biological Chemistry, 264(1), 402-408.
      Ko, A., Cantor, R. M., Weissglas-Volkov, D., Nikkola, E., Reddy, P. M., Sinsheimer, J. S., … Pajukanta, P. (2014). Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nature Communications, 5, 3983. Retrieved from https://doi.org/10.1038/ncomms4983.
      Kovanen, L., Donner, K., & Partonen, T. (2015). SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS One, 10(10), e0141001. Retrieved from https://doi.org/10.1371/journal.pone.0141001.
      Lin, H. M., Lee, J. H., Yadav, H., Kamaraju, A. K., Liu, E., Zhigang, D., … Rane, S. G. (2009). Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. Journal of Biological Chemistry, 284(18), 12246-12257. Retrieved from https://doi.org/10.1074/jbc.M805379200.
      Liu, Z., Zhang, K., Wang, Q., Li, Y., & Zhang, L. (2016). Serum TGF-β1 in patients with acute myocardial infarction. British Journal of Biomedical Science, 73(2), 90-93. Retrieved from https://doi.org/10.1080/09674845.2016.1166683.
      Liu, H. Y., Alyass, A., Abadi, A., Peralta-Romero, J., Suarez, F., Gomez-Zamudio, J., … Meyre, D. (2019). Fine-mapping of 98 obesity loci in Mexican children. International Journal of Obesity (Lond), 43(1), 23-32. Retrieved from https://doi.org/10.1038/s41366-018-0056-7.
      Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402-408. Retrieved from https://doi.org/10.1006/meth.2001.1262.
      Luu, L., Dai, F. F., Prentice, K. J., Huang, X., Hardy, A. B., Hansen, J. B., … Wheeler, M. B. (2013). The loss of Sirt1 in mouse pancreatic β cells impairs insulin secretion by disrupting glucose sensing. Diabetologia, 56(9), 2010-2020. Retrieved from https://doi.org/10.1007/s00125-013-2946-5.
      Magi, R., Horikoshi, M., Sofer, T., Mahajan, A., Kitajima, H., Franceschini, N., … Morris, A. P. (2017). Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 26(18), 3639-3650. Retrieved from https://doi.org/10.1093/hmg/ddx280.
      Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W., … McCarthy, M. I. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 50(11), 1505-1513. Retrieved from https://doi.org/10.1038/s41588-018-0241-6.
      Meigs, J. B. (2019). The genetic epidemiology of type 2 diabetes: Opportunities for health translation. Current Diabetes Reports, 19(8), 62. Retrieved from https://doi.org/10.1007/s11892-019-1173-y.
      Mou, X., Liu, Y., Zhou, D., Hu, Y., Ma, G., Shou, C., … Zhou, D. (2016). Different risk indictors of diabetic nephropathy in transforming growth factor-β1 T869C CC/CT genotype and TT genotype. Iran Journal of Public Health, 45(6), 761-767.
      Najar, R. A., Ghaderian, S. M., & Panah, A. S. (2011). Association of transforming growth factor-β1 gene polymorphisms with genetic susceptibility to acute myocardial infarction. American Journal of the Medical Sciences, 342(5), 365-370. Retrieved from https://doi.org/10.1097/MAJ.0b013e318215908a.
      Naqvi, A., Hoffman, T. A., DeRicco, J., Kumar, A., Kim, C. S., Jung, S. B., … Irani, K. (2010). A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression. Human Molecular Genetics, 19(21), 4123-4133. Retrieved from https://doi.org/10.1093/hmg/ddq331.
      Noriega, L. G., Feige, J. N., Canto, C., Yamamoto, H., Yu, J., Herman, M. A., … Auwerx, J. (2011). CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Reports, 12(10), 1069-1076. Retrieved from https://doi.org/10.1038/embor.2011.151.
      Pardo, P. S., & Boriek, A. M. (2012). An autoregulatory loop reverts the mechanosensitive Sirt1 induction by EGR1 in skeletal muscle cells. Aging, 4(7), 456-461. Retrieved from https://doi.org/10.18632/aging.100470.
      Parra, E. J., Below, J. E., Krithika, S., Valladares, A., Barta, J. L., Cox, N. J., … Cruz, M. (2011). Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia, 54(8), 2038-2046. Retrieved from https://doi.org/10.1007/s00125-011-2172-y.
      Parra, E. J., Mazurek, A., & Gignoux, C. R. (2017). Admixture mapping in two Mexican samples identifies significant associations of locus ancestry with triglyceride levels in the BUD13/ZNF259/APOA5 region and fine mapping points to rs964184 as the main driver of the association signal. PLoS One, 12(2), e0172880. Retrieved from https://doi.org/10.1371/journal.pone.0172880.
      Peng, Y., Zhang, G., Tang, H., Dong, L., Gao, C., Yang, X., … Xu, Y. (2018). Influence of SIRT1 polymorphisms for diabetic foot susceptibility and severity. Medicine, 97(28), e11455. Retrieved from https://doi.org/10.1097/md.0000000000011455.
      Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., … Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature, 429(6993), 771-776. Retrieved from https://doi.org/10.1038/nature02583.
      Pinho, A. V., Bensellam, M., Wauters, E., Rees, M., Giry-Laterriere, M., Mawson, A., … Rooman, I. (2015). Pancreas-specific Sirt1-deficiency in mice compromises β-cell function without development of hyperglycemia. PLoS One, 10(6), e0128012. Retrieved from https://doi.org/10.1371/journal.pone.0128012.
      Qiu, J., Moore, J. H., & Darabos, C. (2016). Studying the genetics of complex disease with ancestry-specific human phenotype networks: The case of type 2 diabetes in East Asian Populations. Genetic Epidemiology, 40(4), 293-303. Retrieved from https://doi.org/10.1002/gepi.21964.
      Raina, P., Sikka, R., Kaur, R., Sokhi, J., Matharoo, K., Singh, V., & Bhanwer, A. J. (2015). Association of transforming growth factor β1 (TGF-β1) genetic variation with type 2 diabetes and end stage renal disease in two large population samples from North India. Omics, 19(5), 306-317. Retrieved from https://doi.org/10.1089/omi.2015.0005.
      Rizk, S. M., Shahin, N. N., & Shaker, O. G. (2016). Association between SIRT1 gene polymorphisms and breast cancer in Egyptians. PLoS One, 11(3), e0151901. Retrieved from https://doi.org/10.1371/journal.pone.0151901.
      Sarumaru, M., Watanabe, M., Inoue, N., Hisamoto, Y., Morita, E., Arakawa, Y., … Iwatani, Y. (2016). Association between functional SIRT1 polymorphisms and the clinical characteristics of patients with autoimmune thyroid disease. Autoimmunity, 49(5), 329-337. Retrieved from https://doi.org/10.3109/08916934.2015.1134506.
      Scott, R. A., Scott, L. J., Magi, R., Marullo, L., Gaulton, K. J., Kaakinen, M., … Prokopenko, I. (2017). An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes, 66(11), 2888-2902. Retrieved from https://doi.org/10.2337/db16-1253.
      Suzuki, T., Dai, P., Hatakeyama, T., Harada, Y., Tanaka, H., Yoshimura, N., & Takamatsu, T. (2013). TGF-β signaling regulates pancreatic β-cell proliferation through control of cell cycle regulator p27 expression. Acta Histochemica et Cytochemica, 46(2), 51-58. Retrieved from https://doi.org/10.1267/ahc.12035.
      Talavera, J. O. Rivas-Ruiz, R., & Bernal-Rosales, L. P. (2011). Investigación clínica V. Tamaño de muestra. Revista Medica del Instituto Mexicano del Seguro Social, 49(5), 517-522.
      Taubenschuss, E., Marton, E., Mogg, M., Frech, B., Ehart, L., Muin, D., & Schreiber, M. (2013). The L10P polymorphism and serum levels of transforming growth factor β1 in human breast cancer. International Journal of Molecular Sciences, 14(8), 15376-15385. Retrieved from https://doi.org/10.3390/ijms140815376.
      Tichauer, J. E., Flores, B., Soler, B., Eugenín-von Bernhardi, L., Ramírez, G., & von Bernhardi, R. (2014). Age-dependent changes on TGFβ1 Smad3 pathway modify the pattern of microglial cell activation. Brain, Behavior, and Immunity, 37, 187-196. Retrieved from https://doi.org/10.1016/j.bbi.2013.12.018.
      Valladares-Salgado, A., Angeles-Martinez, J., Rosas, M., Garcia-Mena, J., Utrera-Barillas, D., Gomez-Diaz, R., … Cruz, M. (2010). Association of polymorphisms within the transforming growth factor-β1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations. Nephrology (Carlton, Vic.), 15(6), 644-648. Retrieved from https://doi.org/10.1111/j.1440-1797.2010.01302.x.
      Wang, R. H., Kim, H. S., Xiao, C., Xu, X., Gavrilova, O., & Deng, C. X. (2011). Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. Journal of Clinical Investigation, 121(11), 4477-4490. Retrieved from https://doi.org/10.1172/jci46243.
      Wang, R. H., Xu, X., Kim, H. S., Xiao, Z., & Deng, C. X. (2013). SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. International Journal of Biological Sciences, 9(9), 934-946. Retrieved from https://doi.org/10.7150/ijbs.7529.
      Ward, L. D., & Kellis, M. (2012). HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Research, 40(Database issue), D930-D934. Retrieved from https://doi.org/10.1093/nar/gkr917.
      Weissglas-Volkov, D., Aguilar-Salinas, C. A., Nikkola, E., Deere, K. A., Cruz-Bautista, I., Arellano-Campos, O., … Pajukanta, P. (2013). Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. Journal of Medical Genetics, 50(5), 298-308. Retrieved from https://doi.org/10.1136/jmedgenet-2012-101461.
      Yang, M., Zhu, M., Tang, L., Zhu, H., Lu, Y., Xu, B., … Chen, X. (2016). Polymorphisms of TGFβ-1 and TGFBR2 in relation to coronary artery disease in a Chinese population. Clinical Biochemistry, 49(12), 873-878. Retrieved from https://doi.org/10.1016/j.clinbiochem.2016.05.022.
      Yokota, M., Ichihara, S., Lin, T. L., Nakashima, N., & Yamada, Y. (2000). Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 101(24), 2783-2787.
      Yuan, J., Minter-Dykhouse, K., & Lou, Z. (2009). A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. The Journal of Cell Biology, 185(2), 203-211. Retrieved from https://doi.org/10.1083/jcb.200809167.
      Zhou, T. B., Jiang, Z. P., Qin, Y. H., & Drummen, G. P. (2014). Association of transforming growth factor-β1 T869C gene polymorphism with diabetic nephropathy risk. Nephrology (Carlton, Vic.), 19(2), 107-115. Retrieved from https://doi.org/10.1111/nep.12176.
    • Grant Information:
      FIS/IMSS/PROT/G14/1333 International Instituto Mexicano del Seguro Social
    • Contributed Indexing:
      Keywords: SIRT1; TGF-β1; diabetes; rs1800470; rs3758391; rs932658
    • Accession Number:
      0 (Biomarkers)
      0 (TGFB1 protein, human)
      0 (Transforming Growth Factor beta1)
      EC 3.5.1.- (SIRT1 protein, human)
      EC 3.5.1.- (Sirtuin 1)
    • Publication Date:
      Date Created: 20191205 Date Completed: 20210204 Latest Revision: 20210204
    • Publication Date:
      20240628
    • Accession Number:
      10.1111/ahg.12363
    • Accession Number:
      31799723