Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Lessons learned from adenovirus (1970-2019).
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Nemerow G;Nemerow G; Flint J; Flint J
- Source:
FEBS letters [FEBS Lett] 2019 Dec; Vol. 593 (24), pp. 3395-3418. Date of Electronic Publication: 2019 Dec 20.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: John Wiley & Sons Ltd Country of Publication: England NLM ID: 0155157 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-3468 (Electronic) Linking ISSN: 00145793 NLM ISO Abbreviation: FEBS Lett Subsets: MEDLINE
- Publication Information: Publication: Jan. 2016- : West Sussex : John Wiley & Sons Ltd.
Original Publication: Amsterdam, North-Holland on behalf of the Federation of European Biochemical Societies. - Subject Terms:
- Abstract: Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
(© 2019 Federation of European Biochemical Societies.) - References: Müller-Hill B (1996) The lac Operon : A Short History of a Genetic Paradigm. Walter de Gruyter, New York, NY.
Roeder RG and Rutter WJ (1970) Multiple ribonucleic acid polymerases and ribonucleic acid synthesis during sea urchin development. Biochemistry 9, 2543-2553.
Kédinger C, Griazdowski M, Mandel JL, Gissinger F and Chambon P (1970) Alpha-amanitin: a specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf-thymus. Biochem Biophys Res Comm 38, 165-172.
Darnell JE, Jelinek WR and Molloy GR (1973) Biogenesis of mRNA: genetic regulation in mammalian cells. Science 181, 1215-1221.
Chardonnet Y and Dales S (1970) Early events in the interaction between adenoviruses and HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40, 462-477.
Price R and Penman S (1972) A distinct RNA polymerase activity synthesizing 5.5S and 4S RNA in nuclei isolated from adenovirus 2-infected HeLa cells. J Mol Biol 70, 435-450.
Green M and Wold WS (1976) Oncogenic DNA viruses-replication, tumor gene expression, and role in human cancer. Semin Oncol 3, 65-79.
Berget SM, Moore C and Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74, 3171-3175.
Chow LT, Roberts JM, Lewis JB and Broker TR (1977) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell 11, 819-836.
Mayindou G, Ngokana B, Sidibe A, Moundele V, Koukouikila-Koussounda F, Christevy Vouvoungui J, Kwedi Nolna S, Velavan TP and Ntoumi F (2015) Molecular epidemiology and surveillance of circulating rotavirus and adenovirus in Congolese children with gastroenteritis. J Med Virol 88, 596-605.
Berget SM and Sharp PA (1979) Structure of late adenovirus 2 heterogeneous nuclear RNA. J Mol Biol 129, 547-565.
Konkel DA, Tilghman SM and Leder P (1978) The sequence of the chromosomal mouse β-globin major gene: homologies in capping, splicing and poly(A) sites. Cell 15, 1125-1132.
Rabbitts TH (1978) Evidence for splicing of interrupted immunoglobulin variable and constant region sequences in nuclear RNA. Nature 275, 291-296.
Ng R and Abelson J (1980) Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci 77, 3912-3916.
Yang VW, Lerner MR, Steitz JA and Flint SJ (1981) A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc Natl Acad Sci USA 78, 1371-1375.
Ziff EB and Evans RM (1978) Coincidence of the promoter and capped 5’ terminus of RNA from the adenovirus 2 major late transcription unit. Cell 15, 1463-1475.
Weil PA, Luse DS, Segall J and Roeder RG (1979) Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18, 469-484.
Nevins JR and Darnell JE (1978) Groups of adenovirus type 2 mRNA's derived from a large primary transcript: probable nuclear origin and possible common 3’ ends. J Virol 25, 811-823.
Nevins JR and Darnell JE Jr (1978) Steps in the processing of Ad2 mRNA: poly(A) + nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15, 1477-1493.
Iwamoto S, Eggerding F, Falck-Pederson E and Darnell JE Jr (1986) Transcription unit mapping in adenovirus: regions of termination. J Virol 59, 112-119.
Tian B and Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18, 18-30.
Berk AJ and Sharp PA (1977) Sizing and Mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12, 721-732.
Chow LT, Broker TR and Lewis J (1979) Complex splicing patterns of RNAs from the early region of adenovirus-2. J Mol Biol 134, 265-303.
Harlow E, Whyte P, Franza BR Jr and Schley C (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6, 1579-1589.
Akusjärvi G and Persson H (1981) Controls of RNA splicing and termination in the major late adenovirus transcription unit. Nature 292, 420-426.
Nevins JR and Wilson MC (1981) Regulation of adenovirus-2 gene expression at the level of transcription termination and RNA processing. Nature 280, 113-118.
Akusjarvi G (2008) Temporal regulation of adenovirus major late alternative RNA splicing. Front Biosci 13, 5006-5015.
Anderson CW, Baum PR and Gesteland RF (1973) Processing of adenovirus 2-induced proteins. J Virol 12, 241-252.
Beltz GA and Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection. Restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131, 353-373.
Flint SJ, Beltz GA and Linzer D (1983) Synthesis and processing of SV40-specific RNA in adenovirus-infected, SV40-transformed human cells. J Mol Biol 167, 335-359.
Yarbrough ML, Mata MA, Sakthivel R and Fontoura BMA (2014) Viral subversion of nucleocytoplasmic trafficking. Traffic 15, 127-140.
Huang J and Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65, 271-280.
Zhang Y and Schneider RJ (1994) Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol 68, 2544-2555.
Cuesta R, Xi Q and Schneider RJ (2001) Preferential translation of adenovirus mRNAs in infected cells. Cold Spring Harb Symp Quant Biol 66, 259-267.
Cuesta R, Xi Q and Schneider RJ (2004) Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein. J Virol 78, 7707-7716.
Hayes BW, Telling GC, Myat MM, Williams JF and Flint SJ (1990) The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species. J Virol 64, 2732-2742.
Logan J and Shenk T (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci USA 81, 3655-3659.
Yueh A and Schneider RJ (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14, 414-421.
Yueh A and Schneider RJ (1996) Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 10, 1557-1567.
Haimov O, Sinvani H and Dikstein R (2015) Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta 1849, 1313-1318.
Forget BG and Weissman SM (1967) Nucleotide sequence of KB cell 5S RNA. Science 158, 1695-1699.
Reich PR, Forget BG and Weissman SM (1966) RNA of low molecular weight in KB cells infected with adenovirus type 2. J Mol Biol 17, 428-439.
Weinmann R, Raskas HJ and Roeder RG (1974) Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 71, 3426-3439.
Mathews MB (1975) Genes for VA RNA in adenovirus 2. Cell 6, 223-229.
Pettersson U and Philipson L (1975) Location of sequences on the adenovirus genome coding for the 5.5S RNA. Cell 6, 1-4.
Rosa MD, Gottlieb E, Lerner MR and Steitz JA (1981) Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and adeonvirus-associated ribonucleic acids VAI and VAII. Mol Cell Bio 1, 785-796.
Rosewick N, Momont M, Durkin K, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortreux F, Wattel E, Burny A et al. (2013) Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci USA 110, 2306-2311.
Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M and Elsing A (2002) Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 269, 273-318.
Desai SY, Patel RC, Sen GC, Malhotra P, Ghadge GD and Thimmapaya B (1995) Activation of interferon-inducible 2’-5’ oligoadenylate synthetase by adenoviral VAI RNA. J Biol Chem 270, 3454-3461.
Machitani M, Yamaguchi T, Shimizu K, Sakurai F, Katayama K, Kawabata K and Mizuguchi H (2011) Adenovirus vector-derived VA-RNA-mediated innate immune responses. Pharmaceutics 3, 338-353.
Gwizdek C, Ossareh-Nazari B, Brownawell AM, Doglio A, Bertrand E, Macara IG and Dargemont C (2003) Exportin-5 mediates nuclear export of minihelix-containing RNAs. J Biol Chem 278, 5505-5508.
Lu S and Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78, 12868-12876.
Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B and Akusjarvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79, 9556-9565.
Zhao H, Chen M and Pettersson U (2013) Identification of adenovirus-encoded small RNAs by deep RNA sequencing. Virology 442, 148-155.
Bellutti F, Kauer M, Kneidinger D, Lion T and Klein R (2015) Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. J Virol 89, 1608-1627.
Kamel W, Segerman B, Oberg D, Punga T and Akusjarvi G (2013) The adenovirus VA RNA-derived miRNAs are not essential for lytic virus growth in tissue culture cells. Nucleic Acids Res 41, 4802-4812.
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M and Mizuguchi H (2016) Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep 6, 27598.
Wakabayashi K, Machitani M, Tachibana M, Sakurai F and Mizuguchi H (2019) A MicroRNA derived from adenovirus virus-associated RNAII promotes virus infection via. Posttranscriptional Gene Silencing J Virol, 93.
Rekosh D, Russell WC, Bellett A and Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11, 283.
Stillman BW and Bellett AJ (1979) An adenovirus protein associated with the ends of replicating DNA molecules. Virology 93, 69-79.
Robinson AJ, Bodnar JW, Coombs DH and Pearson GD (1979) Replicating adenovirus 2 DNA molecules contain terminal protein. Virology 96, 143-158.
Kelly TJ, Wold MS and Li J (1988) Initiation of viral DNA replication. Adv Virus Res 34, 1-42.
Challberg MD and Kelly TJ Jr (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76, 655-659.
Ikeda JE, Enomoto T and Hurwitz J (1982) Adenoviral protein-primed initiation of DNA chains in vitro. Proc Natl Acad Sci USA 79, 2440-2442.
Lichy JF, Field J, Horowitz MS and Hurwitz J (1982) Separation of the adenoviral terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79, 5225-5229.
Enomoto T, Lichy JH, Ikeda JE and Herwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78, 6770-6779.
Stillman BW, Tamanoi F and Mathews MB (1982) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31, 613-632.
van Bergen BG and van der Vliet PC (1983) Temperature-sensitive initiation and elongation of adenovirus DNA replication in vitro with nuclear extracts from H5ts36-, H5ts149-, and H5ts125-infected HeLa cells. J Virol 46, 642-648.
Desiderio SV and Kelly TJ Jr (1981) Structure of the linkage between adenovirus DNA and the 55,000 molecular weight terminal protein. J Mol Biol 145, 319-337.
Smart JE and Stillman BW (1982) Adenovirus terminal protein precursor. Partial amino acid sequence and the site of covalent linkage to virus DNA. J Biol Chem 257, 13499-13506.
Lechner RL and Kelly TJ Jr (1977) The structure of replicating adenovirus 2 DNA molecules. Cell 12, 1007-1020.
Yoo S-K and Ito J (1989) Protein-primed replication of bacteriophage PRD1 genome in vitro. Virology 170, 442-449.
Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60, 39-71.
Salas M and de Vega M (2016) Protein-Primed Replication of Bacteriophage Φ29 DNA, pp. 137-167.
Benson SD, Bamford JK, Bamford DH and Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825-833.
Hu J and Seeger C (2015) Hepadnavirus genome replication and persistence. Cold Spring Harb Perspect Med 5, a021386.
Paul AV and Wimmer E (2015) Initiation of protein-primed picornavirus RNA synthesis. Virus Res 206, 12-26.
Klassen R and Meinhardt F (2007) Linear Protein-Primed Replicating Plasmids in Eukaryotic Microbes. In Microbial Linear Plasmids, pp. 187-226. Springer Berlin Heidelberg, Berlin, Heidelberg.
Hopwood DA (2006) Soil To Genomics: the Streptomyces Chromosome. Annu Rev Genet 40, 1-23.
Peng IF, Berke BA, Zhu Y, Lee WH, Chen W and Wu CF (2007) Temperature-dependent developmental plasticity of Drosophila neurons: cell-autonomous roles of membrane excitability, Ca2 + influx, and cAMP signaling. J Neurosci 27, 12611-12622.
Kapitonov VV and Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA 103, 4540-4545.
Krupovic M and Koonin EV (2016) Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol 31, 25-33.
Fischer MG and Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332, 231-234.
King J and Chiu W (1997) The Procapsid-to-Capsid Transition in Double-Stranded DNA Bacteriophages. In Structural Biology of Viruses (Chiu W, Burnett RM and Garcea RL, eds), pp. 288-311. Oxfore University Press, New York, NY.
Brenkman AB, Breure EC and van der Vliet PC (2002) Molecular architecture of adenovirus DNA polymerase and location of the protein primer. J Virol 76, 8200-8207.
Liu H, Naismith JH and Hay RT (2003) Adenovirus DNA replication. Curr Top Microbiol Immunol 272, 131-164.
Uil TG, Vellinga J, de Vrij J, van den Hengel SK, Rabelink MJ, Cramer SJ, Eekels JJ, Ariyurek Y, van Galen M and Hoeben RC (2011) Directed adenovirus evolution using engineered mutator viral polymerases. Nucleic Acids Res 39, e30.
Webster A, Hay RT and Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72, 97-104.
Davison AJ, Benko M and Harrach B (2003) Genetic content and evolution of adenoviruses. J Gen Virol 84, 2895-2908.
Benevento M, Di Palma S, Snijder J, Moyer CL, Reddy VS, Nemerow GR and Heck AJ (2014) Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J Biol Chem 289, 11421-11430.
Weber J (1976) Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol 17, 462-471.
Yeh-Kai L, Akusjarvi G, Alestrom P, Pettersson U, Tremblay M and Weber J (1983) Genetic identification of an endoproteinase encoded by the adenovirus genome. J Mol Biol 167, 217-222.
Rancourt C, Keyvani-Amineh H, Sircar S, Labrecque P and Weber JM (1995) Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity. Virology 209, 167-173.
Imelli N, Ruzsics Z, Puntener D, Gastaldelli M and Greber UF (2009) Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virol J 6, 174.
Challberg SS and Ketner G (1981) Deletion mutants of adenovirus 2: isolation and initial characterization of virus carrying mutations near the right end of the viral genome. Virology 114, 196-209.
Perez-Berna AJ, Mangel WF, McGrath WJ, Graziano V, Flint J and San Martin C (2014) Processing of the l1 52/55k protein by the adenovirus protease: a new substrate and new insights into virion maturation. J Virol 88, 1513-1524.
McGrath WJ, Ding J, Didwania A, Sweet RM and Mangel WF (2003) Crystallographic structure at 1.6-A resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim Biophys Acta 1648, 1-11.
Mangel WF, McGrath WJ, Toledo DL and Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361, 274-275.
Mangel WF, Toledo DL, Brown MT, Martin JH and McGrath WJ (1996) Characterization of three components of human adenovirus proteinase activity in vitro. J Biol Chem 271, 536-543.
Blainey PC, Graziano V, Perez-Berna AJ, McGrath WJ, Flint SJ, San Martin C, Xie XS and Mangel WF (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. viral proteinase slides along DNA to locate and process its substrates. J Biol Chem 288, 2092-2102.
Graziano V, Luo G, Blainey PC, Perez-Berna AJ, McGrath WJ, Flint SJ, San Martin C, Xie XS and Mangel WF (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction. J Biol Chem 288, 2068-2080.
Mangel WF, McGrath WJ, Xiong K, Graziano V and Blainey PC (2016) Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA. Nat Commun 7, 10202.
Greber UF, Webster P, Weber J and Helenius A (1996) The role of the adenovirus protease on virus entry into cells. EMBO J 15, 1766-1777.
Moyer CL, Wiethoff CM, Maier O, Smith JG and Nemerow GR (2011) Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J Virol 85, 2631-2641.
Nguyen EK, Nemerow GR and Smith JG (2010) Direct evidence from single-cell analysis that human {alpha}-defensins block adenovirus uncoating to neutralize infection. J Virol 84, 4041-4049.
Perez-Berna AJ, Ortega-Esteban A, Menendez-Conejero R, Winkler DC, Menendez M, Steven AC, Flint SJ, de Pablo PJ and San Martin C (2012) The role of capsid maturation on adenovirus priming for sequential uncoating. J Biol Chem 287, 31582-31595.
Ortega-Esteban A, Condezo GN, Perez-Berna AJ, Chillon M, Flint SJ, Reguera D, San Martin C and de Pablo PJ (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9, 10826-10833.
Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D and Branton PE (2001) Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol 75, 699-709.
Harada JN, Shevchenko A, Shevchenko A, Pallas DC and Berk AJ (2002) Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76, 9194-9206.
Schwartz RA, Lakdawala SS, Eshleman HD, Russell MR, Carson CT and Weitzman MD (2008) Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 82, 9043-9055.
Deng L, Qin X, Krell P, Lu R, Sharif S and Nagy É (2016) Characterization and functional studies of fowl adenovirus 9 dUTPase. Virology 497, 251-261.
Deng L, Griffin BD, Pei Y, Leishman D, McBey B-A, Sharif S and Nagy É (2017) Fowl aviadenovirus 9 dUTPase plays a role in regulation of the host immune response. Viral Immunol 30, 662-670.
Davison AJ, Wright KM and Harrach B (2000) DNA sequence of frog adenovirus. J Gen Virol 81, 2431-2439.
Lonberg-Holm K, Crowell RL and Philipson L (1976) Unrelated animal viruses share receptors. Nature 259, 679-681.
Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL and Finberg RW (1997) Isolation of a Common Receptor for Coxsackie B Viruses and Adenoviruses 2 and 5. Science 275, 1320-1323.
Tomko RP, Xu R and Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94, 3352-3356.
Gaggar A, Shayakhmetov DM and Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9, 1408-1412.
Wu E, Trauger SA, Pache L, Mullen TM, von Seggern DJ, Siuzdak G and Nemerow GR (2004) Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78, 3897-3905.
Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB et al. (2011) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 17, 96-104.
Nilsson EC, Storm RJ, Bauer J, Johansson SM, Lookene A, Angstrom J, Hedenstrom M, Eriksson TL, Frangsmyr L, Rinaldi S et al. (2011) The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 17, 105-109.
Arnberg N, Edlund K, Kidd AH and Wadell G (2000) Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74, 42-48.
Burmeister WP, Guilligay D, Cusack S, Wadell G and Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78, 7727-7736.
Greber UF and Flatt JW (2019) Adenovirus entry: from infection to immunity. Annu Rev Virol 6, 177-197.
Everett SF and Ginsberg HS (1958) A toxin-like material separable from type 5 adenovirus particles. Virology 6, 770-771.
Pereira HG (1958) A protein factor responsible for the early cytopathic effect of adenoviruses. Virology 6, 601-611.
Wickham TJ, Mathias P, Cheresh DA and Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309-319.
Cheresh DA and Harper JR (1987) Arg-Gly-Asp recognition by a cell adhesion receptor requires its 130-kDa alpha subunit. J Biol Chem 262, 1434-1437.
Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
Mathias P, Wickham T, Moore M and Nemerow G (1994) Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68, 6811-6814.
Campadelli-Fiume G, Collins-McMillen D, Gianni T and Yurochko AD (2016) Integrins as herpesvirus receptors and mediators of the host signalosome. Annu Rev Virol 3, 215-236.
Gavrilovskaya IN, Brown EJ, Ginsberg MH and Mackow ER (1999) Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol 73, 3951-3959.
Nemerow GR and Cheresh DA (2002) Herpesvirus hijacks an integrin. Nat Cell Biol 4, E69-E71.
Greber UF, Willetts M, Webster P and Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477-486.
Patterson S and Russell WC (1983) Ultrastructural and immunofluorescence studies of early events in adenovirus-HeLa cell interactions. J Gen Virol 64, 1091-1099.
Wang K, Huang S, Kapoor-Munshi A and Nemerow G (1998) Adenovirus internalization and infection require dynamin. J Virol 72, 3455-3458.
Chiu CY, Mathias P, Nemerow GR and Stewart PL (1999) Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol 73, 6759-6768.
Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P and Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J 16, 1189-1198.
Maheshwari G, Brown G, Lauffenburger DA, Wells A and Griffith LG (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113 , 1677-1686.
Stupack DG, Li E, Silletti SA, Kehler JA, Geahlen RL, Hahn K, Nemerow GR and Cheresh DA (1999) Matrix valency regulates integrin-mediated lymphoid adhesion via Syk kinase. J Cell Biol 144, 777-788.
Li E, Stupack D, Klemke R, Cheresh DA and Nemerow GR (1998) Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 72, 2055-2061.
Li E, Stupack D, Bokoch GM and Nemerow GR (1998) Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72, 8806-8812.
Li E, Stupack DG, Brown SL, Klemke R, Schlaepfer DD and Nemerow GR (2000) Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem 275, 14729-14735.
Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S and Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158, 1119-1131.
Wolfrum N and Greber UF (2013) Adenovirus signalling in entry. Cell Microbiol 15, 53-62.
Fujimoto LM, Roth R, Heuser JE and Schmid SL (2000) Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161-171.
Qualmann B, Kessels MM and Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150, F111-F116.
Li E, Brown SL, Von Seggern DJ, Brown GB and Nemerow GR (2000) Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery. Gene Ther 7, 1593-1599.
Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S and Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10, 105-117.
Wiethoff CM, Wodrich H, Gerace L and Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79, 1992-2000.
Moyer CL, Besser ES and Nemerow GR (2015) A Single Maturation Cleavage Site in Adenovirus Impacts Cell Entry and Capsid Assembly. J Virol 90, 521-532.
Maier O, Galan DL, Wodrich H and Wiethoff CM (2010) An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 402, 11-19.
Denning D, Bennett S, Mullen T, Moyer C, Vorselen D, Wuite GJL, Nemerow G and Roos WH (2019) Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. Nanoscale 11, 4015-4024.
Luisoni S, Suomalainen M, Boucke K, Tanner LB, Wenk MR, Guan XL, Grzybek M, Coskun U and Greber UF (2015) Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host Microbe 18, 75-85.
Staring J, Raaben M and Brummelkamp TR (2018) Viral escape from endosomes and host detection at a glance. J Cell Sci 131, jcs216259.
Smith JS, Xu Z, Tian J, Palmer DJ, Ng P and Byrnes AP (2011) The role of endosomal escape and mitogen-activated protein kinases in adenoviral activation of the innate immune response. PLoS ONE 6, e26755.
Fejer G, Drechsel L, Liese J, Schleicher U, Ruzsics Z, Imelli N, Greber UF, Keck S, Hildenbrand B, Krug A et al. (2008) Key role of splenic myeloid DCs in the IFN-alphabeta response to adenoviruses in vivo. PLoS Pathog 4, e1000208.
Barlan AU, Griffin TM, McGuire KA and Wiethoff CM (2011) Adenovirus membrane penetration activates the NLRP3 inflammasome. J Virol 85, 146-155.
McGuire KA, Barlan AU, Griffin TM and Wiethoff CM (2011) Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol 85, 10806-10813.
Anghelina D, Lam E and Falck-Pedersen E (2016) Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol 90, 5915-5927.
Maler MD, Nielsen PJ, Stichling N, Cohen I, Ruzsics Z, Wood C, Engelhard P, Suomalainen M, Gyory I, Huber M et al. (2017) Key role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages. MBio 8, e00670-17.
Shayakhmetov DM, Li ZY, Ternovoi V, Gaggar A, Gharwan H and Lieber A (2003) The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 77, 3712-3723.
San Martín C and van Raaij MJ (2018) The so far farthest reaches of the double jelly roll capsid protein fold. Virol J 15, 181.
van Oostrum J and Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56, 439-448.
Snijder J, Benevento M, Moyer CL, Reddy V, Nemerow GR and Heck AJ (2014) The cleaved N-terminus of pVI binds peripentonal hexons in mature adenovirus. J Mol Biol 426, 1971-1979.
Roberts MM, White JL, Grutter MG and Burnett RM (1986) Three-dimensional structure of the adenovirus major coat protein hexon. Science 232, 1148-1151.
Franklin RM, Pettersson U, Akervall K, Strandberg B and Philipson L (1971) Structural proteins of adenovirus. V. Size and structure of the adenovirus type 2 hexon. J Mol Biol 57, 383-395.
Abrescia NGA, Bamford DH, Grimes JM and Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81, 795-822.
Klose T and Rossmann MG (2014) Structure of large dsDNA viruses. Biol Chem 395, 711-719.
Rux JJ and Burnett RM (2000) Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1, 18-30.
Crawford-Miksza L and Schnurr DP (1996) Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 70, 1836-1844.
Reddy VS, Natchiar SK, Gritton L, Mullen TM, Stewart PL and Nemerow GR (2010) Crystallization and preliminary X-ray diffraction analysis of human adenovirus. Virology 402, 209-214.
van Raaij MJ, Louis N, Chroboczek J and Cusack S (1999) Structure of the human adenovirus serotype 2 fiber head domain at 1.5 A resolution. Virology 262, 333-343.
Xia D, Henry LJ, Gerard RD and Deisenhofer J (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2, 1259-1270.
Cupelli K, Muller S, Persson BD, Jost M, Arnberg N and Stehle T (2010) Structure of adenovirus type 21 knob in complex with CD46 reveals key differences in receptor contacts among species B adenoviruses. J Virol 84, 3189-3200.
Persson BD, Reiter DM, Marttila M, Mei YF, Casasnovas JM, Arnberg N and Stehle T (2007) Adenovirus type 11 binding alters the conformation of its receptor CD46. Nat Struct Mol Biol 14, 164-166.
Durmort C, Stehlin C, Schoehn G, Mitraki A, Drouet E, Cusack S and Burmeister WP (2001) Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology 285, 302-312.
Wang H, Yumul R, Cao H, Ran L, Fan X, Richter M, Epstein F, Gralow J, Zubieta C, Fender P et al. (2013) Structural and functional studies on the interaction of adenovirus fiber knobs and desmoglein 2. J Virol 87, 11346-11362.
Pache L, Venkataraman S, Reddy VS and Nemerow GR (2008) Structural variations in species B adenovirus fibers impact CD46 association. J Virol 82, 7923-7931.
Schoehn G, El Bakkouri M, Fabry CM, Billet O, Estrozi LF, Le L, Curiel DT, Kajava AV, Ruigrok RW and Kremer EJ (2008) Three-dimensional structure of canine adenovirus serotype 2 capsid. J Virol 82, 3192-3203.
Singh AK, Menendez-Conejero R, San Martin C and van Raaij MJ (2014) Crystal structure of the fibre head domain of the atadenovirus snake adenovirus 1. PLoS ONE 9, e114373.
van Raaij MJ, Mitraki A, Lavigne G and Cusack S (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935-938.
Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS and Barry MA (2004) A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci USA 101, 6188-6193.
Stehle T and Dermody TS (2003) Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev Med Virol 13, 123-132.
Zubieta C, Schoehn G, Chroboczek J and Cusack S (2005) The structure of the human adenovirus 2 penton. Mol Cell 17, 121-135.
Schoehn G, Fender P, Chroboczek J and Hewat EA (1996) Adenovirus 3 penton dodecahedron exhibits structural changes of the base on fibre binding. EMBO J 15, 6841-6846.
Diouri M, Keyvani-Amineh H, Geoghegan KF and Weber JM (1996) Cleavage efficiency by adenovirus protease is site-dependent. J Biol Chem 271, 32511-32514.
Mangel WF and San Martin C (2014) Structure, function and dynamics in adenovirus maturation. Viruses 6, 4536-4570.
Mangel WF, Baniecki ML and McGrath WJ (2003) Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin. Cell Mol Life Sci 60, 2347-2355.
Stewart PL, Burnett RM, Cyrklaff M and Fuller SD (1991) Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67, 145-154.
Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW and Schoehn G (2005) A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 24, 1645-1654.
Saban SD, Silvestry M, Nemerow GR and Stewart PL (2006) Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80, 12049-12059.
Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L and Zhou ZH (2010) Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329, 1038-1043.
Liu H, Wu L and Zhou ZH (2011) Model of the trimeric fiber and its interactions with the pentameric penton base of human adenovirus by cryo-electron microscopy. J Mol Biol 406, 764-774.
Reddy VS, Natchiar SK, Stewart PL and Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 A resolution. Science 329, 1071-1075.
Reddy VS and Nemerow GR (2014) Reply to Campos: revised structures of adenovirus cement proteins represent a consensus model for understanding virus assembly and disassembly. Proc Natl Acad Sci USA 111, E4544-E4545.
Kundhavai Natchiar S, Venkataraman S, Mullen T-M, Nemerow GR and Reddy VS (2018) Revised Crystal Structure of Human Adenovirus Reveals the Limits on Protein IX Quasi-Equivalence and on Analyzing Large Macromolecular Complexes. J Mol Biol 430, 4132-4141.
Perez-Berna AJ, Marabini R, Scheres SH, Menendez-Conejero R, Dmitriev IP, Curiel DT, Mangel WF, Flint SJ and San Martin C (2009) Structure and uncoating of immature adenovirus. J Mol Biol 392, 547-557.
Silvestry M, Lindert S, Smith JG, Maier O, Wiethoff CM, Nemerow GR and Stewart PL (2009) Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J Virol 83, 7375-7383.
Lindert S, Silvestry M, Mullen TM, Nemerow GR and Stewart PL (2009) Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin. J Virol 83, 11491-11501.
Veesler D, Cupelli K, Burger M, Graber P, Stehle T and Johnson JE (2014) Single-particle EM reveals plasticity of interactions between the adenovirus penton base and integrin alphaVbeta3. Proc Natl Acad Sci USA 111, 8815-8819.
Varghese R, Mikyas Y, Stewart PL and Ralston R (2004) Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 78, 12320-12332.
Smith JG, Cassany A, Gerace L, Ralston R and Nemerow GR (2008) Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol 82, 6492-6500.
McEwan WA and James LC (2015) TRIM21-dependent intracellular antibody neutralization of virus infection. Prog Mol Biol Transl Sci 129, 167-187.
Smith JG and Nemerow GR (2008) Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 3, 11-19.
Flatt JW, Kim R, Smith JG, Nemerow GR and Stewart PL (2013) An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS ONE 8, e61571.
Roos WH, Gibbons MM, Arkhipov A, Uetrecht C, Watts NR, Wingfield PT, Steven AC, Heck AJ, Schulten K, Klug WS et al. (2010) Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys J 99, 1175-1181.
Snijder J, Reddy VS, May ER, Roos WH, Nemerow GR and Wuite GJ (2013) Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 87, 2756-2766.
Graham FL, Smiley J, Russell WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74.
Lassam NJ, Bayley ST and Graham FL (1979) Tumor antigens of human Ad5 in transformed cells and in cells infected with transformation defective host range mutants. Cell 18, 781-791.
Haj-Ahmad Y and Graham FL (1986) Development of a helper-independent human adenovirus vector and its use in the transfer of the herpes simplex virus thymidine kinase gene. J Virol 57, 267-274.
Kapoor QS, Wold WSM and Chinnadurai G (1981) A nonessential glycoprotein is coded by early region E3 of adenovirus type 7. Virology 112, 780-784.
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066-1073.
Kerem E, Corey M, Kerem B, Durie P, Tsui L-C and Levison H (1989) Clinical and genetic comparisons of patients with cystic fibrosis, with or without meconium ileus. J Pediatr 114, 767-773.
Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059-1065.
Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui L-C, Collins FS, Frizzell RA and Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62, 1227-1233.
Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM, McCann JD, Klinger KW, Smith AE and Welsh MJ (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347, 358-363.
Olsen JC, Johnson LG, Stutts MJ, Sarkadi B, Yankaskas JR, Swanstrom R and Boucher RC (1992) Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum Gene Ther 3, 253-266.
Flotte TR, Solow R, Owens RA, Afione S, Zeitlin PL and Carter BJ (1992) Gene Expression from Adeno-associated Virus Vectors in Airway Epithelial Cells. Am J Respir Cell Mol Biol 7, 349-356.
Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fukayama M, Bargon J, Stier LE, Stratford-Perricaudet L et al. (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143-155.
Yoshimura K, Rosenfeld MA, Nakamura H, Scherer EM, Pavirani A, Lecocq J-P and Crystal RG (1992) Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid-mediated gene transfer. Nucleic Acids Res 20, 3233-3240.
Rosenfeld MA, Chu CS, Seth P, Danel C, Banks T, Yoneyama K, Yoshimura K and Crystal RG (1994) Gene transfer to freshly isolated human respiratory epithelial cells in vitro using a replication-deficient adenovirus containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum Gene Ther 5, 331-342.
Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE and Welsh MJ (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207-216.
Crystal RG, McElvaney NG, Rosenfeld MA, Chu CS, Mastrangeli A, Hay JG, Brody SL, Jaffe HA, Eissa NT and Danel C (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8, 42-51.
Crystal RG, Jaffe A, Brody S, Mastrangeli A, McElvaney NG, Rosenfeld M, Chu C-S, Danel C, Hay J and Eissa T (1995) A Phase 1 Study, in cystic fibrosis patients, of the safety, toxicity, and biological efficacy of a single administration of a replication deficient, recombinant adenovirus carrying the cDNA of the normal cystic fibrosis transmembrane conductance regulator gene in the lung. National Institutes of Health, Bethesda, Maryland. Hum Gene Ther 6, 643-666.
Knowles MR, Hohneker KW, Zhou Z, Olsen JC, Noah TL, Hu P-C, Leigh MW, Engelhardt JF, Edwards LJ, Jones KR et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med 333, 823-831.
Hay JG, McElvaney NG, Herena J and Crystal RG (1995) Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a Normal CFTR cDNA adenovirus gene transfer vector. Hum Gene Ther 6, 1487-1496.
Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R and Boucher RC (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2, 21-25.
Dorin JR, Farley R, Webb S, Smith SN, Farini E, Delaney SJ, Wainwright BJ, Alton EW and Porteous DJ (1996) A demonstration using mouse models that successful gene therapy for cystic fibrosis requires only partial gene correction. Gene Ther 3, 797-801.
Harvey BG, Leopold PL, Hackett NR, Grasso TM, Williams PM, Tucker AL, Kaner RJ, Ferris B, Gonda I, Sweeney TD et al. (1999) Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 104, 1245-1255.
Zabner J, Ramsey BW, Meeker DP, Aitken ML, Balfour RP, Gibson RL, Launspach J, Moscicki RA, Richards SM and Standaert TA (1996) Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest 97, 1504-1511.
Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ and Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274, 10219-10226.
Pickles RJ, Fahrner JA, Petrella JM, Boucher RC and Bergelson JM (2000) Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 74, 6050-6057.
Yang Y, Li Q, Ertl HC and Wilson JM (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 69, 2004-2015.
Yei S, Mittereder N, Tang K, O'Sullivan C and Trapnell BC (1994) Adenovirus-mediated gene transfer for cystic fibrosis: quantitative evaluation of repeated in vivo vector administration to the lung. Gene Ther 1, 192-200.
Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N and Crystal RG (1997) Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 8, 1675-1684.
Wilson JM (2009) Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 96, 151-157.
Ye X, Robinson MB, Batshaw ML, Furth EE, Smith I and Wilson JM (1996) Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J Biol Chem 271, 3639-3646.
Ye X, Robinson MB, Pabin C, Quinn T, Jawad A, Wilson JM and Batshaw ML (1997) Adenovirus-mediated in vivo gene transfer rapidly protects ornithine transcarbamylase-deficient mice from an ammonium challenge. Pediatr Res 41, 527-534.
Nunes FA, Furth EE, Wilson JM and Raper SE (1999) Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration. Hum Gene Ther 10, 2515-2526.
Raper SE, Yudkoff M, Chirmule N, Gao G-PP, Nunes F, Haskal ZJ, Furth EE, Propert KJ, Robinson MB, Magosin S et al. (2002) A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 13, 163-175.
Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM and Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80, 148-158.
Mathis JM, Stoff-Khalili MA and Curiel DT (2005) Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 24, 7775-7791.
Stepanenko AA and Chekhonin VP (2018) Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 257, 40-51.
Gilbert R, Dudley RWR, Liu A-B, Petrof BJ, Nalbantoglu J and Karpati G (2003) Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12, 1287-1299.
Matecki S, Dudley RWR, Divangahi M, Gilbert R, Nalbantoglu J, Karpati G and Petrof BJ (2004) Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am J Physiol Cell Mol Physiol 287, L569-L576.
Alba R, Bosch A and Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12, S18-S27.
Muhammad AKMG, Puntel M, Candolfi M, Salem A, Yagiz K, Farrokhi C, Kroeger KM, Xiong W, Curtin JF, Liu C et al. (2010) Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a Phase I clinical trial for glioblastoma. Clin Pharmacol Ther 88, 204-213.
Sumida SM, Truitt DM, Lemckert AA, Vogels R, Custers JH, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG et al. (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 174, 7179-7185.
Dudareva M, Andrews L, Gilbert SCC, Bejon P, Marsh K, Mwacharo J, Kai O, Nicosia A and Hill AVSV (2009) Prevalence of serum neutralizing antibodies against chimpanzee adenovirus 63 and human adenovirus 5 in Kenyan children, in the context of vaccine vector efficacy. Vaccine 27, 3501-3504.
Lasaro MO and Ertl HC (2009) New insights on adenovirus as vaccine vectors. Mol Ther 17, 1333-1339.
Majhen D, Calderon H, Chandra N, Fajardo CA, Rajan A, Alemany R and Custers J (2014) Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther 25, 301-317.
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K et al. (2019) A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 18, 597-613.
Abbink P, Lemckert AA, Ewald BA, Lynch DM, Denholtz M, Smits S, Holterman L, Damen I, Vogels R, Thorner AR et al. (2007) Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol 81, 4654-4663.
Colloca S, Barnes E, Folgori A, Ammendola V, Capone S, Cirillo A, Siani L, Naddeo M, Grazioli F, Esposito ML et al. (2012) Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med 4, 115ra2.
Hartman ZC, Appledorn DM and Amalfitano A (2008) Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 132, 1-14.
Aldhamen YA, Seregin SS and Amalfitano A (2011) Immune recognition of gene transfer vectors: focus on adenovirus as a paradigm. Front Immunol 2, 40.
Lindert S, Silvestry M, Mullen TM, Nemerow GR and Stewart PL (2009) Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin. J Virol 83, 11491-11501.
Khayat R and Johnson JE (2011) Pass the jelly rolls. Structure 19, 904-906. - Contributed Indexing: Keywords: adenovirus; molecular biology; virology
- Accession Number: 0 (Receptors, Cell Surface)
- Publication Date: Date Created: 20191129 Date Completed: 20200618 Latest Revision: 20200618
- Publication Date: 20231215
- Accession Number: 10.1002/1873-3468.13700
- Accession Number: 31777951
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.