Structure-functional changes in eNAMPT at high concentrations mediate mouse and human beta cell dysfunction in type 2 diabetes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin Springer Verlag
    • Subject Terms:
    • Abstract:
      Aims/hypothesis: Progressive decline in functional beta cell mass is central to the development of type 2 diabetes. Elevated serum levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) are associated with beta cell failure in type 2 diabetes and eNAMPT immuno-neutralisation improves glucose tolerance in mouse models of diabetes. Despite this, the effects of eNAMPT on functional beta cell mass are poorly elucidated, with some studies having separately reported beta cell-protective effects of eNAMPT. eNAMPT exists in structurally and functionally distinct monomeric and dimeric forms. Dimerisation is essential for the NAD-biosynthetic capacity of NAMPT. Monomeric eNAMPT does not possess NAD-biosynthetic capacity and may exert distinct NAD-independent effects. This study aimed to fully characterise the structure-functional effects of eNAMPT on pancreatic beta cell functional mass and to relate these to beta cell failure in type 2 diabetes.
      Methods: CD-1 mice and serum from obese humans who were without diabetes, with impaired fasting glucose (IFG) or with type 2 diabetes (from the Body Fat, Surgery and Hormone [BodyFatS&H] study) or with or at risk of developing type 2 diabetes (from the VaSera trial) were used in this study. We generated recombinant wild-type and monomeric eNAMPT to explore the effects of eNAMPT on functional beta cell mass in isolated mouse and human islets. Beta cell function was determined by static and dynamic insulin secretion and intracellular calcium microfluorimetry. NAD-biosynthetic capacity of eNAMPT was assessed by colorimetric and fluorescent assays and by native mass spectrometry. Islet cell number was determined by immunohistochemical staining for insulin, glucagon and somatostatin, with islet apoptosis determined by caspase 3/7 activity. Markers of inflammation and beta cell identity were determined by quantitative reverse transcription PCR. Total, monomeric and dimeric eNAMPT and nicotinamide mononucleotide (NMN) were evaluated by ELISA, western blot and fluorometric assay using serum from non-diabetic, glucose intolerant and type 2 diabetic individuals.
      Results: eNAMPT exerts bimodal and concentration- and structure-functional-dependent effects on beta cell functional mass. At low physiological concentrations (~1 ng/ml), as seen in serum from humans without diabetes, eNAMPT enhances beta cell function through NAD-dependent mechanisms, consistent with eNAMPT being present as a dimer. However, as eNAMPT concentrations rise to ~5 ng/ml, as in type 2 diabetes, eNAMPT begins to adopt a monomeric form and mediates beta cell dysfunction, reduced beta cell identity and number, increased alpha cell number and increased apoptosis, through NAD-independent proinflammatory mechanisms.
      Conclusions/interpretation: We have characterised a novel mechanism of beta cell dysfunction in type 2 diabetes. At low physiological levels, eNAMPT exists in dimer form and maintains beta cell function and identity through NAD-dependent mechanisms. However, as eNAMPT levels rise, as in type 2 diabetes, structure-functional changes occur resulting in marked elevation of monomeric eNAMPT, which induces a diabetic phenotype in pancreatic islets. Strategies to selectively target monomeric eNAMPT could represent promising therapeutic strategies for the treatment of type 2 diabetes.
    • References:
      Diabetologia. 2011 Dec;54(12):3083-92. (PMID: 21901281)
      Mol Metab. 2017 May 29;6(8):819-832. (PMID: 28752046)
      Mol Cell Biol. 1994 Feb;14(2):1431-7. (PMID: 8289818)
      Biochem J. 2012 Jan 1;441(1):131-41. (PMID: 21933152)
      Am J Transplant. 2005 Mar;5(3):484-93. (PMID: 15707402)
      Nat Commun. 2016 Oct 11;7:13103. (PMID: 27725675)
      Cell Metab. 2007 Nov;6(5):363-75. (PMID: 17983582)
      J Clin Endocrinol Metab. 2011 Aug;96(8):2354-66. (PMID: 21697254)
      Science. 2005 Jan 21;307(5708):426-30. (PMID: 15604363)
      Eur J Immunol. 2011 May;41(5):1231-41. (PMID: 21469131)
      Biomed Environ Sci. 2015 Mar;28(3):169-77. (PMID: 25800441)
      PLoS One. 2014 Jun 26;9(6):e99785. (PMID: 24968098)
      PLoS One. 2013;8(1):e54106. (PMID: 23342086)
      Diabetes Metab Res Rev. 2011 Sep;27(6):515-27. (PMID: 21484978)
      Transplantation. 2004 Jan 15;77(1):143-5. (PMID: 14724452)
      Diabetes. 2006 Oct;55(10):2871-5. (PMID: 17003355)
      Diabetologia. 2016 Nov;59(11):2477-2486. (PMID: 27541013)
      Diabetes Res Clin Pract. 2011 Feb;91(2):154-8. (PMID: 21122936)
      Sci Rep. 2015 Aug 14;5:13135. (PMID: 26272519)
      J Biol Chem. 2011 Jun 17;286(24):21767-78. (PMID: 21504897)
      Anal Biochem. 2011 May 1;412(1):18-25. (PMID: 21211508)
      J Mol Endocrinol. 2010 Mar;44(3):171-8. (PMID: 19906834)
      Cell Metab. 2015 May 5;21(5):706-17. (PMID: 25921090)
      Endocrinology. 1993 Jun;132(6):2659-65. (PMID: 8504766)
      J Immunol. 2007 Feb 1;178(3):1748-58. (PMID: 17237424)
      Curr Pharm Des. 2009;15(1):20-8. (PMID: 19149599)
      Br J Clin Pharmacol. 2019 Jan;85(1):169-180. (PMID: 30294825)
      Aging Cell. 2008 Jan;7(1):78-88. (PMID: 18005249)
      Nat Struct Mol Biol. 2006 Jul;13(7):661-2. (PMID: 16783373)
      Clin Endocrinol (Oxf). 2008 Dec;69(6):885-93. (PMID: 18410550)
      Diabetes Obes Metab. 2013 Sep;15 Suppl 3:26-33. (PMID: 24003918)
      J Biol Chem. 2008 Dec 12;283(50):34833-43. (PMID: 18945671)
      PLoS One. 2012;7(4):e35074. (PMID: 22493731)
      Biochem J. 1988 Sep 1;254(2):397-403. (PMID: 2845950)
      J Am Coll Cardiol. 2017 Sep 26;70(13):1683-1684. (PMID: 28935045)
      Cytokine. 2014 Feb;65(2):159-66. (PMID: 24332931)
      Diabetologia. 1993 Nov;36(11):1139-45. (PMID: 8270128)
      PLoS One. 2012;7(1):e30415. (PMID: 22299040)
      Front Cell Dev Biol. 2017 May 23;5:55. (PMID: 28589121)
      Cell Metab. 2011 Oct 5;14(4):528-36. (PMID: 21982712)
      Eur J Immunol. 2002 Nov;32(11):3225-34. (PMID: 12555668)
      J Endocrinol. 2010 Apr;205(1):97-106. (PMID: 20093281)
      Diabetologia. 2013 May;56(5):1068-77. (PMID: 23397292)
      Biochem Pharmacol. 2009 May 15;77(10):1612-20. (PMID: 19426698)
    • Grant Information:
      MC_PC_17164 United Kingdom MRC_ Medical Research Council; MR/S025618/1 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; MR/N00275X/1 United Kingdom MRC_ Medical Research Council
    • Contributed Indexing:
      Keywords: Beta cell; Extracellularnicotinamide phosphoribosyltransferase; Inflammation; Insulin secretion; NAD; Type 2 diabetes; eNAMPT
    • Accession Number:
      0 (Cytokines)
      51110-01-1 (Somatostatin)
      9007-92-5 (Glucagon)
      EC 2.4.2.12 (Nicotinamide Phosphoribosyltransferase)
      EC 2.4.2.12 (nicotinamide phosphoribosyltransferase, human)
    • Publication Date:
      Date Created: 20191117 Date Completed: 20210201 Latest Revision: 20210317
    • Publication Date:
      20221213
    • Accession Number:
      PMC6946736
    • Accession Number:
      10.1007/s00125-019-05029-y
    • Accession Number:
      31732790