Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Research efforts directed to elucidation of mechanisms behind trading of resources between the partners in the arbuscular mycorrhizal (AM) symbiosis have seen a considerable progress in the recent years. Yet, despite of the recent developments, some key questions still remain unanswered. For example, it is well established that the strictly biotrophic AM fungus releases phosphorus to- and receives carbon molecules from the plant symbiont, but the particular genes, and their products, responsible for facilitating this exchange, are still not fully described, nor are the principles and pathways of their regulation. Here, we made a de novo quest for genes involved in carbon transfer from the plant to the fungus using genome-wide gene expression array targeting whole root and whole shoot gene expression profiles of mycorrhizal and non-mycorrhizal Medicago truncatula plants grown in a glasshouse. Using physiological intervention of heavy shading (90% incoming light removed) and the correlation of expression levels of MtPT4, the mycorrhiza-inducible phosphate transporter operating at the symbiotic interface between the root cortical cells and the AM fungus, and our candidate genes, we demonstrate that several novel genes may be involved in resource tradings in the AM symbiosis established by M. truncatula. These include glucose-6-phosphate/phosphate translocator, polyol/monosaccharide transporter, DUR3-like, nucleotide-diphospho-sugar transferase or a putative membrane transporter. Besides, we also examined the expression of other M. truncatula phosphate transporters (MtPT1-3, MtPT5-6) to gain further insights in the balance between the "direct" and the "mycorrhizal" phosphate uptake pathways upon colonization of roots by the AM fungus, as affected by short-term carbon/energy deprivation. In addition, the role of the novel candidate genes in plant cell metabolism is discussed based on available literature.
      Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
    • References:
      Planta. 2005 Nov;222(4):688-98. (PMID: 16133217)
      Plant Physiol Biochem. 2019 Apr;137:203-212. (PMID: 30802803)
      Plant J. 2012 Mar;69(5):906-20. (PMID: 22077667)
      Mycorrhiza. 2018 Apr;28(3):269-283. (PMID: 29455336)
      Science. 2017 Jun 16;356(6343):1172-1175. (PMID: 28596307)
      Nature. 2010 Nov 25;468(7323):527-32. (PMID: 21107422)
      Mycorrhiza. 2011 Nov;21(8):689-702. (PMID: 21472448)
      BMC Genomics. 2017 Aug 8;18(1):589. (PMID: 28789611)
      New Phytol. 2018 Mar;217(4):1420-1427. (PMID: 29292829)
      Mycorrhiza. 2018 Aug;28(5-6):435-450. (PMID: 29931404)
      Plant Physiol. 2003 Sep;133(1):16-20. (PMID: 12970469)
      Front Plant Sci. 2014 Jun 04;5:237. (PMID: 24926297)
      Nucleic Acids Res. 2002 Jan 1;30(1):207-10. (PMID: 11752295)
      BMC Genomics. 2014 Apr 27;15:312. (PMID: 24767513)
      Plant J. 2014 Aug;79(3):398-412. (PMID: 24888347)
      Curr Opin Plant Biol. 2018 Aug;44:137-144. (PMID: 29729528)
      BMC Genomics. 2011 Mar 21;12:156. (PMID: 21418615)
      Plant Physiol. 2005 Sep;139(1):329-40. (PMID: 16126866)
      Plant Cell. 1998 Jan;10(1):105-17. (PMID: 9477574)
      Plant Physiol. 2009 Oct;151(2):809-19. (PMID: 19692536)
      Plant Cell Environ. 2019 Jan;42(1):270-284. (PMID: 29859016)
      Plant Physiol Biochem. 2016 Oct;107:354-363. (PMID: 27362299)
      Front Plant Sci. 2014 May 28;5:228. (PMID: 24904623)
      New Phytol. 2017 Jun;214(4):1631-1645. (PMID: 28380681)
      Phytochemistry. 2007 Mar;68(6):709-31. (PMID: 17234224)
      Plant J. 1996 Apr;9(4):491-503. (PMID: 8624512)
      Mycorrhiza. 2017 Jan;27(1):35-51. (PMID: 27549438)
      Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5. (PMID: 17242358)
      Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9. (PMID: 12271140)
      Plant Physiol. 2011 Jul;156(3):1050-7. (PMID: 21467213)
      Trends Plant Sci. 2016 Nov;21(11):937-950. (PMID: 27514454)
      Plant J. 2005 Apr;42(2):236-50. (PMID: 15807785)
      Plant J. 2015 Feb;81(3):377-87. (PMID: 25440717)
      J Exp Bot. 2010;61(2):537-50. (PMID: 19969532)
      New Phytol. 2019 Oct;224(1):396-408. (PMID: 31148173)
      Front Plant Sci. 2016 Jun 27;7:912. (PMID: 27446142)
      Theor Appl Genet. 2017 Feb;130(2):261-268. (PMID: 27662844)
      Mycobiology. 2017 Mar;45(1):20-24. (PMID: 28435350)
      Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22. (PMID: 24277808)
      Elife. 2017 Jul 20;6:. (PMID: 28726631)
      Nature. 2014 Apr 24;508(7497):546-9. (PMID: 24670640)
      Nat Rev Microbiol. 2008 Oct;6(10):763-75. (PMID: 18794914)
      New Phytol. 2019 Apr;222(2):1043-1053. (PMID: 30565261)
      Trends Biochem Sci. 2013 Mar;38(3):151-9. (PMID: 23403214)
      Science. 2012 Jan 13;335(6065):207-11. (PMID: 22157085)
      Planta. 2009 Apr;229(5):1023-34. (PMID: 19169704)
      Curr Biol. 2017 Sep 11;27(17):R952-R963. (PMID: 28898668)
      Plant Cell. 2002 Oct;14(10):2413-29. (PMID: 12368495)
      Plant Cell. 2011 Oct;23(10):3812-23. (PMID: 21972259)
      Plant J. 2018 Jul;95(2):219-232. (PMID: 29687516)
      Curr Biol. 2012 Dec 4;22(23):2242-6. (PMID: 23122843)
      J Biol Chem. 2008 Sep 5;283(36):24673-81. (PMID: 18596039)
      Trends Ecol Evol. 1995 Oct;10(10):407-11. (PMID: 21237085)
      Mol Plant. 2012 Nov;5(6):1346-58. (PMID: 22930732)
      Nat Plants. 2016 Jan 18;2:15208. (PMID: 27249190)
      Plant Cell. 2012 Oct;24(10):4236-51. (PMID: 23073651)
      Adv Bioinformatics. 2008;2008:420747. (PMID: 19956698)
      Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5266-70. (PMID: 24639507)
      Appl Microbiol Biotechnol. 2013 May;97(10):4639-49. (PMID: 22805783)
      Front Plant Sci. 2016 May 25;7:679. (PMID: 27252708)
      Plant Signal Behav. 2008 May;3(5):317-9. (PMID: 19841657)
      Front Plant Sci. 2012 May 07;3:85. (PMID: 22639669)
      Planta. 2015 Apr;241(4):861-74. (PMID: 25522795)
      New Phytol. 2019 Aug;223(3):1127-1142. (PMID: 30843207)
      Nature. 2001 Nov 22;414(6862):462-70. (PMID: 11719809)
      Plant Cell Physiol. 2006 Jul;47(7):807-17. (PMID: 16774930)
      Trends Plant Sci. 2017 Aug;22(8):652-660. (PMID: 28622919)
      Mol Plant. 2017 Sep 12;10(9):1147-1158. (PMID: 28782719)
      Plant J. 2014 Jun;78(5):877-89. (PMID: 24654931)
      Sci China Life Sci. 2012 Jun;55(6):474-82. (PMID: 22744177)
      Plant Physiol. 2010 Feb;152(2):1000-14. (PMID: 20007443)
      Front Plant Sci. 2016 Apr 14;7:487. (PMID: 27148312)
      Front Plant Sci. 2015 Feb 13;6:65. (PMID: 25763002)
      Front Plant Sci. 2017 Mar 27;8:390. (PMID: 28396674)
    • Accession Number:
      0 (Plant Proteins)
      27YLU75U4W (Phosphorus)
      7440-44-0 (Carbon)
    • Publication Date:
      Date Created: 20191112 Date Completed: 20200323 Latest Revision: 20221207
    • Publication Date:
      20231215
    • Accession Number:
      PMC6844471
    • Accession Number:
      10.1371/journal.pone.0224938
    • Accession Number:
      31710651