In vivo thromboxane-dependent platelet activation is persistently enhanced in subjects with impaired glucose tolerance.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 100883450 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-7560 (Electronic) Linking ISSN: 15207552 NLM ISO Abbreviation: Diabetes Metab Res Rev Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, England : Wiley-Blackwell, c1999-
    • Subject Terms:
    • Abstract:
      Background: Impaired glucose tolerance (IGT) is associated with increased cardiovascular morbidity and mortality. Enhanced thromboxane (TX)-dependent platelet activation plays a pivotal role in atherothrombosis and characterizes type 2 diabetes mellitus (DM). Whether this also pertains to IGT is currently unknown. We investigated whether TXA 2 -dependent platelet activation, as reflected by 11-dehydro-TXB 2 (TXM) urinary excretion, is comparably abnormal in IGT as in DM, is persistent over long-term follow-up, changes as a function of metabolic disease progression, and is influenced by food intake.
      Methods: We prospectively investigated subjects with IGT (n = 48) and two control groups with DM diagnosed either less than 12 months (n = 60) or 12 months or more (n = 58).
      Results: Baseline TXM excretion was comparable between subjects with IGT and DM, with no evidence of a circadian variation. During a 36-month follow-up, urinary TXM excretion was stable over time in the DM groups, while tended to increase in subjects with IGT. Increasing urinary TXM excretion over time was observed in the subjects who progressed to diabetes vs nonprogressors.
      Conclusions: We conclude that TXA 2 -dependent platelet activation was at least as high in IGT as in patients with DM and further increased over time, especially in those who progressed to overt diabetes.
      (© 2019 John Wiley & Sons, Ltd.)
    • References:
      Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459-2502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.
      Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130-1139.
      Barr EL, Zimmet PZ, Welborn TA, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007;116(2):151-157.
      Selvin E, Steffes MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362(9):800-811. https://doi.org/10.1056/NEJMoa0908359.
      Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953. https://doi.org/10.1136/bmj.i5953.
      Qiao Q, Pyorala K, Pyorala M, et al. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur Heart J. 2002;23(16):1267-1275.
      Faerch K, Vistisen D, Johansen NB, Jorgensen ME. Cardiovascular risk stratification and management in pre-diabetes. Curr Diab Rep. 2014;14(6):493. https://doi.org/10.1007/s11892-014-0493-1.
      Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334:299.
      Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486-494.
      Kaiser T, Sawicki PT. Acarbose for prevention of diabetes, hypertension and cardiovascular events? A critical analysis of the STOP-NIDDM data. Diabetologia. 2004;47(3):575-580. https://doi.org/10.1007/s00125-003-1318-y.
      Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482-2494.
      Davi G, Catalano I, Averna M, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990;322(25):1769-1774.
      Santilli F, Formoso G, Sbraccia P, et al. Postprandial hyperglycemia is a determinant of platelet activation in early type 2 diabetes mellitus. J Thromb Haemost. 2010;8(4):828-837. https://doi.org/10.1111/j.1538-7836.2010.03742.x.
      Davi G, Gresele P, Violi F, et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation. 1997;96(1):69-75.
      Davi G, Ciabattoni G, Consoli A, et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation. 1999;99(2):224-229.
      Santilli F, Davi G, Consoli A, et al. Thromboxane-dependent CD40 ligand release in type 2 diabetes mellitus. J Am Coll Cardiol. 2006;47(2):391-397.
      Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681-1687.
      Coban E, Kucuktag S, Basyigit S. Platelet activation in subjects with impaired glucose tolerance. Platelets. 2007;18(8):591-594.
      Dogru T, Genc H, Tasci I, et al. Platelet aggregation is not enhanced in patients with prediabetes. Ups J Med Sci. 2007;112(3):338-346.
      Santilli F, Rocca B, De Cristofaro R, et al. Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin "resistance". J Am Coll Cardiol. 2009;53(8):667-677.
      Patrono C, Morais J, Baigent C, et al. Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J Am Coll Cardiol. 2017;70(14):1760-1776. https://doi.org/10.1016/j.jacc.2017.08.037.
      Ciabattoni G, Pugliese F, Davi G, Pierucci A, Simonetti BM, Patrono C. Fractional conversion of thromboxane B2 to urinary 11-dehydrothromboxane B2 in man. Biochim Biophys Acta. 1989;992(1):66-70.
      Standards of Medical Care in Diabetes-2019. 2. Classification and diagnosis of diabetes. Diabetes Care. 2019;42(Supplement 1):S13-S28. https://doi.org/10.2337/dc19-S002.
      Pagliaccia F, Habib A, Pitocco D, et al. Stability of urinary thromboxane A2 metabolites and adaptation of the extraction method to small urine volume. Clin Lab. 2014;60(1):105-111.
      Catella F, FitzGerald GA. Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb Res. 1987;47(6):647-656.
      Wang Z, Ciabattoni G, Creminon C, et al. Immunological characterization of urinary 8-epi-prostaglandin F2 alpha excretion in man. J Pharmacol Exp Ther. 1995;275(1):94-100.
      Ciabattoni G, Maclouf J, Catella F, FitzGerald GA, Patrono C. Radioimmunoassay of 11-dehydrothromboxane B2 in human plasma and urine. Biochim Biophys Acta. 1987;918(3):293-297.
      Brindle E, Fujita M, Shofer J, O'Connor KA. Serum, plasma, and dried blood spot high-sensitivity C-reactive protein enzyme immunoassay for population research. J Immunol Methods. 2010;362(1-2):112-120. https://doi.org/10.1016/j.jim.2010.09.014.
      DeFronzo RA, Abdul-Ghani M. Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. Am J Cardiol. 2011;108(Suppl 3):3B-24B. https://doi.org/10.1016/j.amjcard.2011.03.013.
      Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002;25(7):1129-1134.
      Trovati M, Mularoni EM, Burzacca S, et al. Impaired insulin-induced platelet antiaggregating effect in obesity and in obese NIDDM patients. Diabetes. 1995;44(11):1318-1322.
      Basili S, Pacini G, Guagnano MT, et al. Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol. 2006;48(12):2531-2538.
      Davi G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA. 2002;288(16):2008-2014.
      Davi G, Chiarelli F, Santilli F, et al. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation. 2003;107(25):3199-3203.
      Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105(14):1650-1655.
      Eikelboom JW, Hankey GJ, Thom J, et al. Incomplete inhibition of thromboxane biosynthesis by acetylsalicylic acid: determinants and effect on cardiovascular risk. Circulation. 2008;118(17):1705-1712. https://doi.org/10.1161/CIRCULATIONAHA.108.768283.
      Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279-2290. https://doi.org/10.1016/S0140-6736(12)60283-9.
      Halvorsen B, Santilli F, Scholz H, et al. LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro. Diabetologia. 2016;59(10):2134-2144.
      Standards of Medical Care in Diabetes. 5. Prevention or Delay of Type 2 Diabetes. Diabetes Care. 2017;40(Suppl 1):S44-S47.
      Ibrahim JG, Molenberghs G. Missing data methods in longitudinal studies: a review. Test (Madr). 2009;18(1):1-43.
      Mitchell JA, Knowles RB, Kirkby NS, et al. Kidney transplantation in a patient lacking cytosolic phospholipase A2 proves renal origins of urinary PGI-M and TX-M. Circ Res. 2018;122(4):555-559. https://doi.org/10.1161/CIRCRESAHA.117.312144.
    • Contributed Indexing:
      Keywords: cardiovascular morbidity; impaired glucose tolerance; platelet activation; thromboxane; type 2 diabetes mellitus
    • Accession Number:
      0 (Biomarkers)
      0 (Blood Glucose)
      0 (Thromboxanes)
    • Publication Date:
      Date Created: 20191101 Date Completed: 20201201 Latest Revision: 20201201
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/dmrr.3232
    • Accession Number:
      31671234