Converting GTP hydrolysis into motion: versatile translational elongation factor G.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Walter De Gruyter Country of Publication: Germany NLM ID: 9700112 Publication Model: Print Cited Medium: Internet ISSN: 1437-4315 (Electronic) Linking ISSN: 14316730 NLM ISO Abbreviation: Biol Chem Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Walter De Gruyter
      Original Publication: Berlin ; New York : W. De Gruyter, c1996-
    • Subject Terms:
    • Abstract:
      Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.
    • References:
      Abdi, N.M. and Fredrick, K. (2005). Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11, 1624–1632.
      Adio, S., Senyushkina, T., Peske, F., Fischer, N., Wintermeyer, W., and Rodnina, M.V. (2015). Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat. Commun. 6, 7442.
      Ævarsson, A., Brazhnikov, E., Garber, M., Zheltonosova, J., Chirgadze, Y., al-Karadaghi, S., Svensson, L.A., and Liljas, A. (1994). Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677.
      Agirrezabala, X., Samatova, E., Klimova, M., Zamora, M., Gil-Carton, D., Rodnina, M.V., and Valle, M. (2017). Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 3, e1700147.
      Allin, C. and Gerwert, K. (2001). Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry 40, 3037–3046.
      Aqvist, J. and Kamerlin, S.C. (2015a). The conformation of a catalytic loop is central to GTPase activity on the ribosome. Biochemistry 54, 546–556.
      Aqvist, J. and Kamerlin, S.C. (2015b). Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome. Sci. Rep. 5, 15817.
      Atkinson, G.C. (2015). The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 16, 78.
      Belardinelli, R., Sharma, H., Caliskan, N., Cunha, C.E., Peske, F., Wintermeyer, W., and Rodnina, M.V. (2016a). Choreography of molecular movements during ribosome progression along mRNA. Nat. Struct. Mol. Biol. 23, 342–348.
      Belardinelli, R., Sharma, H., Peske, F., Wintermeyer, W., and Rodnina, M.V. (2016b). Translocation as continuous movement through the ribosome. RNA Biol. 13, 1197–1203.
      Bock, L.V., Blau, C., Schroder, G.F., Davydov, II, Fischer, N., Stark, H., Rodnina, M.V., Vaiana, A.C., and Grubmuller, H. (2013). Energy barriers and driving forces in tRNA translocation through the ribosome. Nat Struct Mol Biol 20, 1390–1396.
      Borg, A., Pavlov, M., and Ehrenberg, M. (2016). Complete kinetic mechanism for recycling of the bacterial ribosome. RNA 22, 10–21.
      Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127.
      Brilot, A.F., Korostelev, A.A., Ermolenko, D.N., and Grigorieff, N. (2013). Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl. Acad. Sci. U.S.A. 110, 20994–20999.
      Chen, Y., Feng, S., Kumar, V., Ero, R., and Gao, Y.G. (2013). Structure of EF-G-ribosome complex in a pretranslocation state. Nat. Struct. Mol. Biol. 20, 1077–1084.
      Chen, J., Coakley, A., O’Connor, M., Petrov, A., O’Leary, S.E., Atkins, J.F., and Puglisi, J.D. (2015). Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163, 1267–1280.
      Chen, C., Cui, X., Beausang, J.F., Zhang, H., Farrell, I., Cooperman, B.S., and Goldman, Y.E. (2016). Elongation factor G initiates translocation through a power stroke. Proc. Natl. Acad. Sci. U.S.A. 113, 7515–7520.
      Chen, Y., Kaji, A., Kaji, H., and Cooperman, B.S. (2017). The kinetic mechanism of bacterial ribosome recycling. Nucleic Acids Res. 45, 10168–10177.
      Cross, R.A. (2016). Review: mechanochemistry of the kinesin-1 ATPase. Biopolymers 105, 476–482.
      Cunha, C.E., Belardinelli, R., Peske, F., Holtkamp, W., Wintermeyer, W., and Rodnina, M.V. (2013). Dual use of GTP hydrolysis by elongation factor G on the ribosome. Translation (Austin) 1, e24315.
      Czworkowski, J. and Moore, P.B. (1997). The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36, 10327–10334.
      Czworkowski, J., Wang, J., Steitz, T.A., and Moore, P.B. (1994). The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668.
      Daviter, T., Wieden, H.J., and Rodnina, M.V. (2003). Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332, 689–699.
      Dunkle, J.A., Wang, L., Feldman, M.B., Pulk, A., Chen, V.B., Kapral, G.J., Noeske, J., Richardson, J.S., Blanchard, S.C., and Cate, J.H. (2011). Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984.
      Fischer, N., Konevega, A.L., Wintermeyer, W., Rodnina, M.V., and Stark, H. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333.
      Fischer, N., Neumann, P., Bock, L.V., Maracci, C., Wang, Z., Paleskava, A., Konevega, A.L., Schroder, G.F., Grubmuller, H., Ficner, R., et al. (2016). The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540, 80–85.
      Fu, Z., Kaledhonkar, S., Borg, A., Sun, M., Chen, B., Grassucci, R.A., Ehrenberg, M., and Frank, J. (2016). Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24, 2092–2101.
      Gao, N., Zavialov, A.V., Li, W., Sengupta, J., Valle, M., Gursky, R.P., Ehrenberg, M., and Frank, J. (2005). Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol. Cell 18, 663–674.
      Gao, N., Zavialov, A.V., Ehrenberg, M., and Frank, J. (2007). Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J. Mol. Biol. 374, 1345–1358.
      Gao, Y.G., Selmer, M., Dunham, C.M., Weixlbaumer, A., Kelley, A.C., and Ramakrishnan, V. (2009). The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699.
      Geeves, M.A. (2016). Review: the ATPase mechanism of myosin and actomyosin. Biopolymers 105, 483–491.
      Guydosh, N.R. and Green, R. (2014). Dom34 rescues ribosomes in 3’ untranslated regions. Cell 156, 950–962.
      Hansson, S., Singh, R., Gudkov, A.T., Liljas, A., and Logan, D.T. (2005). Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett. 579, 4492–4497.
      Hauryliuk, V., Mitkevich, V.A., Eliseeva, N.A., Petrushanko, I.Y., Ehrenberg, M., and Makarov, A.A. (2008). The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form. Proc. Natl. Acad. Sci. U.S.A. 105, 15678–15683.
      Hirokawa, G., Kiel, M.C., Muto, A., Selmer, M., Raj, V.S., Liljas, A., Igarashi, K., Kaji, H., and Kaji, A. (2002). Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21, 2272–2281.
      Holtkamp, W., Cunha, C.E., Peske, F., Konevega, A.L., Wintermeyer, W., and Rodnina, M.V. (2014). GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J. 33, 1073–1085.
      Huang, W.M., Ao, S.Z., Casjens, S., Orlandi, R., Zeikus, R., Weiss, R., Winge, D., and Fang, M. (1988). A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239, 1005–1012.
      Iwakura, N., Yokoyama, T., Quaglia, F., Mitsuoka, K., Mio, K., Shigematsu, H., Shirouzu, M., Kaji, A., and Kaji, H. (2017). Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: evidence for the release of the mRNA by RRF and EF-G. PLoS One 12, e0177972.
      Janosi, L., Hara, H., Zhang, S., and Kaji, A. (1996). Ribosome recycling by ribosome recycling factor (RRF) – an important but overlooked step of protein biosynthesis. Adv. Biophys. 32, 121–201.
      Jobe, A., Liu, Z., Gutierrez-Vargas, C., and Frank, J. (2019). New insights into ribosome structure and function. Cold Spring Harb. Perspect. Biol. 11, a032615.
      Karimi, R., Pavlov, M.Y., Buckingham, R.H., and Ehrenberg, M. (1999). Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3, 601–609.
      Kaziro, Y. (1978). The role of guanosine 5’-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505, 95–127.
      Klimova, M., Senyushkina, T., Samatova, E., Peng, B.Z., Pearson, M., Peske, F., and Rodnina, M.V. (2019). EF-G-induced ribosome sliding along the noncoding mRNA. Sci. Adv. 5, eaaw9049.
      Koch, M., Flur, S., Kreutz, C., Ennifar, E., Micura, R., and Polacek, N. (2015). Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis. Proc. Natl. Acad. Sci. U.S.A. 112, E2561–2568.
      Konevega, A.L., Fischer, N., Semenkov, Y.P., Stark, H., Wintermeyer, W., and Rodnina, M.V. (2007). Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat. Struct. Mol. Biol. 14, 318–324.
      Leipe, D.D., Wolf, Y.I., Koonin, E.V., and Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72.
      Lin, J., Gagnon, M.G., Bulkley, D., and Steitz, T.A. (2015). Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 160, 219–227.
      Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J.D., Lancaster, L., Wickersham, C.E., Fredrick, K., Noller, H., Tinoco, I., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. eLife 3, e03406.
      Maracci, C. and Rodnina, M.V. (2016). Review: translational GTPases. Biopolymers 105, 463–475.
      Maracci, C., Peske, F., Dannies, E., Pohl, C., and Rodnina, M.V. (2014). Ribosome-induced tuning of GTP hydrolysis by a translational GTPase. Proc. Natl. Acad. Sci. U.S.A. 111, 14418–14423.
      Miettinen, T.P. and Bjorklund, M. (2015). Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3’ untranslated regions. Nucleic Acids Res. 43, 1019–1034.
      Mijailovich, S.M., Nedic, D., Svicevic, M., Stojanovic, B., Walklate, J., Ujfalusi, Z., and Geeves, M.A. (2017). Modeling the actin-myosin ATPase cross-bridge cycle for skeletal and cardiac muscle myosin isoforms. Biophys J 112, 984–996.
      Munro, J.B., Wasserman, M.R., Altman, R.B., Wang, L., and Blanchard, S.C. (2010). Correlated conformational events in EF-G and the ribosome regulate translocation. Nat. Struct. Mol. Biol. 17, 1470–1477.
      Noller, H.F., Lancaster, L., Mohan, S., and Zhou, J. (2017). Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA. Q. Rev. Biophys. 50, e12.
      Pan, D., Kirillov, S.V., and Cooperman, B.S. (2007). Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529.
      Peng, B.-Z., Bock, L.V., Belardinelli, R., Peske, F., Grubmüller, H., and Rodnina, M.V. (2019). Active role of elongation factor G in maintaining the mRNA reading frame during translation. Sci. Adv., in press.
      Peske, F., Matassova, N.B., Savelsbergh, A., Rodnina, M.V., and Wintermeyer, W. (2000). Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Mol. Cell 6, 501–505.
      Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V., and Wintermeyer, W. (2004). Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA–mRNA translocation. J. Mol. Biol. 343, 1183–1194.
      Peske, F., Rodnina, M.V., and Wintermeyer, W. (2005). Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol. Cell 18, 403–412.
      Ramrath, D.J., Lancaster, L., Sprink, T., Mielke, T., Loerke, J., Noller, H.F., and Spahn, C.M. (2013). Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl. Acad. Sci. U.S.A. 110, 20964–20969.
      Rodnina, M.V. (2018). Translation in prokaryotes. Cold Spring Harb. Perspect. Biol. 10, a032664.
      Rodnina, M.V., Savelsbergh, A., Katunin, V.I., and Wintermeyer, W. (1997). Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41.
      Salsi, E., Farah, E., Netter, Z., Dann, J., and Ermolenko, D.N. (2015). Movement of elongation factor G between compact and extended conformations. J. Mol. Biol. 427, 454–467.
      Samatova, E., Konevega, A.L., Wills, N.M., Atkins, J.F., and Rodnina, M.V. (2014). High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nat. Commun. 5, 4459.
      Savelsbergh, A., Matassova, N.B., Rodnina, M.V., and Wintermeyer, W. (2000). Role of domains 4 and 5 in elongation factor G functions on the ribosome. J. Mol. Biol. 300, 951–961.
      Savelsbergh, A., Katunin, V.I., Mohr, D., Peske, F., Rodnina, M.V., and Wintermeyer, W. (2003). An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523.
      Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W., and Rodnina, M.V. (2005). Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J. 24, 4316–4323.
      Savelsbergh, A., Rodnina, M.V., and Wintermeyer, W. (2009). Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15, 772–780.
      Schuwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila- Sanjurjo, A., Holton, J.M., and Cate, J.H. (2005). Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834.
      Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A., and Liljas, A. (1999). Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 286, 2349–2352.
      Selmer, M., Dunham, C.M., Murphy, F.V., Weixlbaumer, A., Petry, S., Kelley, A.C., Weir, J.R., and Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942.
      Sharma, H., Adio, S., Senyushkina, T., Belardinelli, R., Peske, F., andRodnina, M.V. (2016). Kinetics of spontaneous and EF-G-accelerated rotation of ribosomal subunits. Cell Rep. 16, 2187–2196.
      Shoji, S., Walker, S.E., and Fredrick, K. (2006). Reverse translocation of tRNA in the ribosome. Mol. Cell. 24, 931–942.
      Sweeney, H.L. and Houdusse, A. (2010). Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557.
      Tourigny, D.S., Fernández, I.S., Kelley, A.C., and Ramakrishnan, V. (2013). Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490.
      Voorhees, R.M., Schmeing, T.M., Kelley, A.C., and Ramakrishnan, V. (2010). The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838.
      Wilden, B., Savelsbergh, A., Rodnina, M.V., and Wintermeyer, W. (2006). Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc. Natl. Acad. Sci. U.S.A. 103, 13670–13675.
      Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971.
      Xu, S., Yin, H., Gavriliuc, M., Lin, R., and Wang, Y. (2019). Modulation and visualization of EF-G power stroke during ribosomal translocation. Chembiochem. doi: 10.1002/cbic.201900276. [Epub ahead of print].
      Yao, L., Li, Y., Tsai, T.W., Xu, S., and Wang, Y. (2013). Noninvasive measurement of the mechanical force generated by motor protein EF-G during ribosome translocation. Angew. Chem. Int. Ed. Engl. 52, 14041–14044.
      Zhou, J., Lancaster, L., Donohue, J.P., and Noller, H.F. (2013). Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086.
      Zhou, J., Lancaster, L., Donohue, J.P., and Noller, H.F. (2014). How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345, 1188–1191.
      Zhou, J., Lancaster, L., Donohue, J.P., and Noller, H.F. (2019). Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. Proc. Natl. Acad. Sci. U.S.A. 116, 7813–7818.
    • Contributed Indexing:
      Keywords: protein synthesis; reading frame maintenance; ribosome bypassing; ribosome recycling; translocation
    • Accession Number:
      0 (Peptide Elongation Factor G)
      0 (RNA, Messenger)
      86-01-1 (Guanosine Triphosphate)
      9014-25-9 (RNA, Transfer)
      EC 3.6.1.- (GTP Phosphohydrolases)
    • Publication Date:
      Date Created: 20191011 Date Completed: 20200820 Latest Revision: 20210611
    • Publication Date:
      20221213
    • Accession Number:
      10.1515/hsz-2019-0313
    • Accession Number:
      31600135