Characterization of in vitro neural functional connectivity on a neurofluidic device.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Shen X;Shen X; Wu J; Wu J; Wang Z; Wang Z; Chen T; Chen T
  • Source:
    Electrophoresis [Electrophoresis] 2019 Nov; Vol. 40 (22), pp. 2996-3004. Date of Electronic Publication: 2019 Oct 14.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 8204476 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2683 (Electronic) Linking ISSN: 01730835 NLM ISO Abbreviation: Electrophoresis Subsets: MEDLINE
    • Publication Information:
      Publication: : Weinheim : Wiley-VCH
      Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
    • Subject Terms:
    • Abstract:
      Understanding the mechanism of functional connectivity in neural system is of great benefit to lot of researches and applications. Microfluidics and microelectrode arrays (MEAs) have been frequently utilized for in vitro neural cultures study. However, there are few studies on the functional connectivity of neural cultures grown on a microfluidic chip. It is intriguing to unveil the influences of microfluidic structures on in vitro neuronal networks from the perspective of functional connectivity. Hence, in the present study, a device was established, which comprised a microfluidic chamber for cell growth and a MEA substrate for recording the electrophysiological response of the neuronal networks. The network topology, neural firing rate, neural bursting rate and network burst frequency were adopted as representative characteristics for neuronal networks analysis. Functional connectivity was estimated by means of cross-covariance analysis and graph theory. The results demonstrated that the functional connectivity of the in vitro neuronal networks formed in the microchannel has been apparently reinforced, corresponding to improve neuronal network density and increased small-worldness.
      (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
    • References:
      Netoff, T. I., Clewley, R., Arno, S., Keck, T., White, J. A., J. Neurosci. 2004, 24, 8075-8083.
      Gratwicke, J., Jahanshahi, M., Foltynie, T., Brain 2015, 138, 1454-1476.
      Sanz-Arigita, E. J., Schoonheim, M. M., Damoiseaux, J. S., Rombouts, S. A. R. B., Maris, E., Barkhof, F., Scheltens, P., Stam, C. J., PLoS One 2010, 5, e13788.
      Nicolelis, M. A. L., Nat. Rev. Neurosci. 2003, 4, 417-422.
      Helmstaedter, M., Neuron 2015, 86, 25-28.
      Aebersold, M. J., Dermutz, H., Forro, C., Weydert, S., Thompson-Steckel, G., Voros, J., Demko, L., Trends. Analyt. Chem. 2016, 78, 60-69.
      Soe, A. K., Nahavandi, S., Khoshmanesh, K., Biosens. Bioelectron. 2012, 35, 1-13.
      Hasan, M. F., Berdichevsky, Y., Micromachines 2016, 7, 157.
      Morin, F. O., Takamura, Y., Tamiya, E., J. Biosci. Bioeng. 2005, 100, 131-143.
      Heuschkel, M. O., Guerin, L., Buisson, B., Bertrand, D., Renaud, P., Sens. Actuators, B 1998, 48, 356-361.
      Kraus, T., Verpoorte, E., Linder, V., Franks, W., Hierlemann, A., Heer, F., Hafizovic, S., Fujii, T., de Rooij, N. F., Koster, S., Lab Chip 2006, 6, 218-229.
      Morin, F., Nishimura, N., Griscom, L., LePioufle, B., Fujita, H., Takamura, Y., Tamiya, E., Biosens. Bioelectron. 2006, 21, 1093-1100.
      Dworak, B. J., Wheeler, B.C., Lab Chip 2009, 9, 404-410.
      Gobbels, K., Thiebes, A. L., van Ooyen, A., Schnakenberg, U., Braunig, P., J. Insect Physiol. 2010, 56, 1003-1009.
      Biffi, E., Menegon, A., Piraino, F., Pedrocchi, A., Fiore, G. B., Rasponi, M., Biotechnol. Bioeng. 2012, 109, 166-175.
      Biffi, E., Piraino, F., Pedrocchi, A., Fiore, G. B., Ferrigno, G., Redaelli, A., Rasponi, M., Biomicrofluidics 2012, 6, 024106.
      Takayama, Y., Kotake, N., Haga, T., Suzuki, T., Mabuchi, K., J. Biosci. Bioeng. 2012, 114, 92-95.
      Scott, A., Weir, K., Easton, C., Huynh, W., Moody, W. J., Folch, A., Lab Chip 2013, 13, 527-535.
      Gladkov, A., Pigareva, Y., Kutyina, D., Kolpakov, V., Bukatin, A., Mukhina, I., Kazantsev, V., Pimashkin, A., Sci. Rep. 2017, 7, 14.
      Poli, D., Pastore, V. P., Massobrio, P., Front. Neural. Circuits 2015, 9, 14.
      Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T., Brain 2008, 131, 945-961.
      Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., Gross, G. W., Phys. Rev. E 2007, 75, 10.
      Downes, J. H., Hammond, M. W., Xydas, D., Spencer, M. C., Becerra, V. M., Warwick, K., Whalley, B. J., Nasuto, S. J., PLoS Comput. Biol. 2012, 8, e1002522.
      Gafarov, F. M., Physica A: Statistical Mechanics and its Applications 2016, 461, 409-418.
      Brewer, G. J., J. Neurosci. Methods 1997, 71, 143-155.
      Seibenhener, M. L., Wooten, M. W., JoVE 2012, e3634.
      Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., van Pelt, J., Neurocomputing 2005, 65-66, 653-662.
      Wagenaar, D., DeMarse, T. B., Potter, S. M., in 2005 2nd International IEEE/EMBS Conference on Neural Engineering, IEEE, New York 2005, pp. 518-521.
      Aertsen, A., Gerstein, G. L., Brain Res. 1985, 340, 341-354.
      Srinivas, K. V., Jain, R., Saurav, S., Sikdar, S. K., Eur. J. Neurosci. 2007, 25, 3276-3286.
      Sun, J. J., Kilb, W., Luhmann, H. J., Eur. J. Neurosci. 2010, 32, 1289-1299.
      Maccione, A., Garofalo, M., Nieus, T., Tedesco, M., Berdondini, L., Martinoia, S., J. Neurosci. Methods 2012, 207, 161-171.
      Han, Y., Li, H., Zhang, P., Li, H., Lang, Y., Zhao, Y., Sun, H., Ma, X., Han, J., Wang, Q., Zhou, J., Wang, C., Neurochem. Res. 2017, 42, 1394-1402.
      De la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., Reyes, A., Nature 2007, 448, 802-806.
      Watts, D. J., Strogatz, S. H., Nature 1998, 393, 440-442.
      Humphries, M. D., Gurney, K., PLoS One 2008, 3, e0002051.
      Wang, L., Riss, M., Buitrago, J. O., Claverol-Tinture, E., J. Neural Eng. 2012, 9, 14.
      Marconi, E., Nieus, T., Maccione, A., Valente, P., Simi, A., Messa, M., Dante, S., Baldelli, P., Berdondini, L., Benfenati, F., PLoS One 2012, 7, e34648.
    • Grant Information:
      KZ201910005009 International Key Scientific and Technological Projects of Beijing Education Commission; KYJJ2016011 International Tsinghua University
    • Contributed Indexing:
      Keywords: Neural functional connectivity; Neurofluidic device; Neuronal networks
    • Publication Date:
      Date Created: 20190927 Date Completed: 20200327 Latest Revision: 20200327
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/elps.201900168
    • Accession Number:
      31556965