Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- Publication Information:
Original Publication: London : Nature Publishing Group, copyright 2011-
- Subject Terms:
- Abstract:
S-acylation is a common post-translational modification of membrane protein cysteine residues with many regulatory roles. S-acylation adjacent to transmembrane domains has been described in the literature as affecting diverse protein properties including turnover, trafficking and microdomain partitioning. However, all of these data are derived from mammalian and yeast systems. Here we examine the role of S-acylation adjacent to the transmembrane domain of the plant pathogen perceiving receptor-like kinase FLS2. Surprisingly, S-acylation of FLS2 adjacent to the transmembrane domain is not required for either FLS2 trafficking or signalling function. Expanding this analysis to the wider plant receptor-like kinase family we find that S-acylation adjacent to receptor-like kinase domains is common, affecting ~25% of Arabidopsis receptor-like kinases, but poorly conserved between orthologues through evolution. This suggests that S-acylation of receptor-like kinases at this site is likely the result of chance mutation leading to cysteine occurrence. As transmembrane domains followed by cysteine residues are common motifs for S-acylation to occur, and many S-acyl transferases appear to have lax substrate specificity, we propose that many receptor-like kinases are fortuitously S-acylated once chance mutation has introduced a cysteine at this site. Interestingly some receptor-like kinases show conservation of S-acylation sites between orthologues suggesting that S-acylation has come to play a role and has been positively selected for during evolution. The most notable example of this is in the ERECTA-like family where S-acylation of ERECTA adjacent to the transmembrane domain occurs in all ERECTA orthologues but not in the parental ERECTA-like clade. This suggests that ERECTA S-acylation occurred when ERECTA emerged during the evolution of angiosperms and may have contributed to the neo-functionalisation of ERECTA from ERECTA-like proteins.
- References:
Science. 2013 Dec 20;342(6165):1241089. (PMID: 24357323)
Plant J. 1998 Dec;16(6):735-43. (PMID: 10069079)
Plant Physiol. 2000 Aug;123(4):1247-56. (PMID: 10938344)
Biotechniques. 2017 Feb 1;62(2):69-75. (PMID: 28193150)
Curr Biol. 2018 Mar 5;28(5):722-732.e6. (PMID: 29478854)
Plant Physiol. 2018 Jun;177(2):522-531. (PMID: 29686160)
Plant Methods. 2016 Aug 03;12:38. (PMID: 27493678)
PLoS Genet. 2011 Apr;7(4):e1002046. (PMID: 21593986)
BMC Genomics. 2009 Jan 14;10:22. (PMID: 19144180)
Genes Dev. 2012 Jan 15;26(2):126-36. (PMID: 22241782)
Cell. 2006 May 19;125(4):749-60. (PMID: 16713565)
FEBS J. 2013 Jun;280(12):2766-74. (PMID: 23551889)
Nature. 2004 Apr 15;428(6984):764-7. (PMID: 15085136)
Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808. (PMID: 29092050)
J Biol Chem. 2012 Mar 2;287(10):7236-45. (PMID: 22247542)
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11034-9. (PMID: 27651493)
Genes Dev. 2007 Jul 1;21(13):1598-602. (PMID: 17578906)
Plant Physiol. 2012 Sep;160(1):396-406. (PMID: 22744984)
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5384-9. (PMID: 18378904)
Methods Mol Biol. 2015;1217:105-19. (PMID: 25287199)
Mol Cell. 2000 Jun;5(6):1003-11. (PMID: 10911994)
Plant Cell. 2014 Jan;26(1):465-84. (PMID: 24415770)
J Biol Chem. 1996 Aug 16;271(33):19789-93. (PMID: 8702686)
Cell. 2006 Jun 2;125(5):1003-13. (PMID: 16751107)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
New Phytol. 2012 Jul;195(1):217-30. (PMID: 22494141)
Development. 2003 May;130(10):2149-59. (PMID: 12668629)
J Mol Biol. 2010 Dec 17;404(5):902-16. (PMID: 20950627)
Nat Protoc. 2008;3(6):1101-8. (PMID: 18546601)
New Phytol. 2013 Feb;197(3):805-14. (PMID: 23252521)
Biochim Biophys Acta. 2001 May 2;1512(1):1-14. (PMID: 11334619)
Protein Eng Des Sel. 2008 Nov;21(11):639-44. (PMID: 18753194)
Plant Physiol. 2003 Oct;133(2):462-9. (PMID: 14555774)
Plant Cell. 1996 Apr;8(4):735-46. (PMID: 8624444)
Plant Physiol. 2003 Jan;131(1):16-26. (PMID: 12529511)
BMC Genomics. 2018 Jun 4;19(1):431. (PMID: 29866046)
Microb Biotechnol. 2017 May;10(3):555-569. (PMID: 28169510)
Science. 2018 Jan 12;359(6372):. (PMID: 29326245)
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10763-8. (PMID: 11526204)
Nature. 2011 May 5;473(7345):97-100. (PMID: 21478875)
Plant J. 1999 May;18(3):277-84. (PMID: 10377993)
J Cell Biol. 2006 Jan 16;172(2):309-20. (PMID: 16401723)
J Biol Chem. 2000 Mar 17;275(11):7521-6. (PMID: 10713056)
J Biosci Bioeng. 2007 Jul;104(1):34-41. (PMID: 17697981)
Trends Plant Sci. 2002 May;7(5):193-5. (PMID: 11992820)
Science. 1995 Dec 15;270(5243):1804-6. (PMID: 8525370)
Front Plant Sci. 2018 Apr 10;9:473. (PMID: 29692796)
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. (PMID: 24753421)
BMC Biol. 2014 Nov 05;12:91. (PMID: 25371237)
- Grant Information:
BB/M024911/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/M010996/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
- Accession Number:
0 (Arabidopsis Proteins)
12777-81-0 (Flagellin)
EC 2.7.- (Protein Kinases)
EC 2.7.1.- (FLS2 protein, Arabidopsis)
K848JZ4886 (Cysteine)
- Publication Date:
Date Created: 20190908 Date Completed: 20201022 Latest Revision: 20210110
- Publication Date:
20240829
- Accession Number:
PMC6731221
- Accession Number:
10.1038/s41598-019-49302-x
- Accession Number:
31492958
No Comments.