References: Hinrichs, M. H. et al. Tau protein diffuses along the microtubule lattice. J. Biol. Chem. 287, 38559–38568 (2012). (PMID: 10.1074/jbc.M112.369785)
Kneynsberg, A., Combs, B., Christensen, K., Morfini, G. & Kanaan, N. M. Axonal degeneration in tauopathies: disease relevance and underlying mechanisms. Front. Neurosci. 11, 572 (2017). (PMID: 10.3389/fnins.2017.00572)
Qiang, L. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 26, 3120–3129 (2006). (PMID: 10.1523/JNEUROSCI.5392-05.2006)
Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011). (PMID: 10.1016/j.neuron.2011.04.009)
Gao, Y.-L. et al. Tau in neurodegenerative disease. Ann. Transl. Med. 6, 175–175 (2018). (PMID: 10.21037/atm.2018.04.23)
Iqbal, K., Liu, F. & Gong, C.-X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27 (2016). (PMID: 10.1038/nrneurol.2015.225)
Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992). (PMID: 10.1091/mbc.3.10.1141)
Chaudhary, A. R., Berger, F., Berger, C. L. & Hendricks, A. G. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 19, 111–121 (2018). (PMID: 10.1111/tra.12537)
Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. F. Differential regulation of dynein and kinesin motor proteins by Tau. Science 319, 1086–1089 (2008). (PMID: 10.1126/science.1152993)
Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007). (PMID: 10.1073/pnas.0607919104)
Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896–4905 (2002). (PMID: 10.1093/emboj/cdf503)
Trinczek, B., Ebneth, A., Mandelkow, E. M. & Mandelkow, E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 112, 2355–2367 (1999). (PMID: 10381391)
Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J. Cell Biol. 143, 777–794 (1998). (PMID: 10.1083/jcb.143.3.777)
Gamblin, T. C., Berry, R. W. & Binder, L. I. Tau polymerization: role of the amino terminus. Biochemistry 42, 2252–2257 (2003). (PMID: 10.1021/bi0272510)
Tan, R. et al. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0375-5 (2019). (PMID: 10.1038/s41556-019-0375-5)
Makrides, V., Massie, M. R., Feinstein, S. C. & Lew, J. Evidence for two distinct binding sites for tau on microtubules. Proc. Natl Acad. Sci. USA 101, 6746–6751 (2004). (PMID: 10.1073/pnas.0400992101)
Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018). (PMID: 10.15252/embj.201798049)
Schneider, R., Korten, T., Walter, W. J. & Diez, S. Kinesin-1 motors can circumvent permanent roadblocks by side-shifting to neighboring protofilaments. Biophys. J. 108, 2249–2257 (2015). (PMID: 10.1016/j.bpj.2015.03.048)
Telley, I. A., Bieling, P. & Surrey, T. Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract. Biophys. J. 96, 3341–3353 (2009). (PMID: 10.1016/j.bpj.2009.01.015)
Jiang, K. et al. Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nat. Cell Biol. 19, 480–492 (2017). (PMID: 10.1038/ncb3511)
Varga, V., Leduc, C., Bormuth, V., Diez, S. & Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174–1183 (2009). (PMID: 10.1016/j.cell.2009.07.032)
Leduc, C. et al. Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Natl Acad. Sci. USA 109, 6100–6105 (2012). (PMID: 10.1073/pnas.1107281109)
Kellogg, E. H. et al. Near-atomic model of microtubule–tau interactions. Science 360, 1242–1246 (2018). (PMID: 10.1126/science.aat1780)
McVicker, D. P., Hoeprich, G. J., Thompson, A. R. & Berger, C. L. Tau interconverts between diffusive and stable populations on the microtubule surface in an isoform and lattice specific manner. Cytoskeleton 71, 184–194 (2014). (PMID: 10.1002/cm.21163)
Hernández-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed Tau phase. Cell Rep. 20, 2304–2312 (2017). (PMID: 10.1016/j.celrep.2017.08.042)
Bechstedt, S. & Brouhard, G. J. Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends. Dev. Cell 23, 181–192 (2012). (PMID: 10.1016/j.devcel.2012.05.006)
Sing, C. E., Olvera de la Cruz, M. & Marko, J. F. Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res. 42, 3783–3791 (2014). (PMID: 10.1093/nar/gkt1327)
Lansky, Z. et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell 160, 1159–1168 (2015). (PMID: 10.1016/j.cell.2015.01.051)
Samsonov, A., Yu, J.-Z., Rasenick, M. & Popov, S. V. Tau interaction with microtubules in vivo. J. Cell Sci. 117, 6129–6141 (2004). (PMID: 10.1242/jcs.01531)
Bechstedt, S., Lu, K. & Brouhard, G. J. Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice. Curr. Biol. 24, 2366–2375 (2014). (PMID: 10.1016/j.cub.2014.08.039)
Monroy, B. Y. et al. Competition between microtubule-associated proteins directs motor transport. Nat. Commun. 9, 1714 (2018). (PMID: 10.1038/s41467-018-03909-2)
Mitra, A., Ruhnow, F., Girardo, S. & Diez, S. Directionally biased sidestepping of Kip3/kinesin-8 is regulated by ATP waiting time and motor-microtubule interaction strength. Proc. Natl Acad. Sci. USA 115, E7950–E7959 (2018). (PMID: 10.1073/pnas.1801820115)
Nitzsche, B. et al. Studying kinesin motors by optical 3D-nanometry in gliding motility assays. Methods Cell Biol. 95, 247–271 (2010). (PMID: 10.1016/S0091-679X(10)95014-0)
Braun, M. et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 13, 1259–1264 (2011). (PMID: 10.1038/ncb2323)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 10.1038/nmeth.2019)
Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011). (PMID: 10.1016/j.bpj.2011.04.023)
No Comments.