Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Solis AG;Solis AG; Bielecki P; Bielecki P; Steach HR; Steach HR; Sharma L; Sharma L; Harman CCD; Harman CCD; Yun S; Yun S; Yun S; Yun S; de Zoete MR; de Zoete MR; Warnock JN; Warnock JN; To SDF; To SDF; York AG; York AG; Mack M; Mack M; Schwartz MA; Schwartz MA; Schwartz MA; Schwartz MA; Dela Cruz CS; Dela Cruz CS; Palm NW; Palm NW; Jackson R; Jackson R; Flavell RA; Flavell RA; Flavell RA
- Source:
Nature [Nature] 2019 Sep; Vol. 573 (7772), pp. 69-74. Date of Electronic Publication: 2019 Aug 21.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
- Publication Information: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd. - Subject Terms: Hydrostatic Pressure* ; Immunity, Innate*; Ion Channels/*metabolism ; Mechanotransduction, Cellular/*immunology; Animals ; Endothelin-1/metabolism ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Inflammation/immunology ; Inflammation/metabolism ; Inflammation/microbiology ; JNK Mitogen-Activated Protein Kinases/metabolism ; Lung/immunology ; Lung/metabolism ; Lung/microbiology ; Macrophages/immunology ; Macrophages/metabolism ; Male ; Mice ; Pseudomonas Infections/immunology ; Pseudomonas aeruginosa/immunology ; Signal Transduction
- Abstract: Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.
- Comments: Comment in: Nature. 2019 Sep;573(7772):41-42. (PMID: 31481766)
Comment in: Nat Rev Immunol. 2019 Oct;19(10):595. (PMID: 31485035)
Erratum in: Nature. 2019 Nov 12;:. (PMID: 31712625) - References: Pritchard, M. T., Li, Z. & Repasky, E. A. Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J. Leukoc. Biol. 78, 630–638 (2005). (PMID: 10.1189/jlb.0404220)
Anand, R. J. et al. Hypoxia causes an increase in phagocytosis by macrophages in a HIF-1α-dependent manner. J. Leukoc. Biol. 82, 1257–1265 (2007). (PMID: 10.1189/jlb.0307195)
Ip, W. K. E. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015). (PMID: 10.1038/ncomms7931)
Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016). (PMID: 10.1084/jem.20160061)
Palm, N. W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 221–233 (2009). (PMID: 10.1111/j.1600-065X.2008.00731.x)
Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017). (PMID: 10.1038/nri.2017.74)
Hsiai, T. K. et al. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003). (PMID: 10.1096/fj.02-1064com)
McWhorter, F. Y., Davis, C. T. & Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72, 1303–1316 (2015). (PMID: 10.1007/s00018-014-1796-8)
Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010). (PMID: 10.1126/science.1193270)
Murthy, S. E. et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci. Transl. Med. 10, eaat9897 (2018). (PMID: 10.1126/scitranslmed.aat9897)
Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017). (PMID: 10.1038/nature21407)
Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Invest. 126, 4527–4536 (2016). (PMID: 10.1172/JCI87343)
Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011). (PMID: 10.1038/nrn2993)
Schipke, K. J., To, S. D. F. & Warnock, J. N. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves. J. Vis. Exp. (54):3316 (2011).
Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014). (PMID: 10.1038/nature13701)
He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016). (PMID: 10.1016/j.tibs.2016.09.002)
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). (PMID: 10.1038/nature11986)
Yamashita, K., Discher, D. J., Hu, J., Bishopric, N. H. & Webster, K. A. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J. Biol. Chem. 276, 12645–12653 (2001). (PMID: 10.1074/jbc.M011344200)
Lee, J. J. et al. Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis 31, 427–434 (2010). (PMID: 10.1093/carcin/bgp326)
Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014). (PMID: 10.1016/j.immuni.2014.09.008)
Varia, M. A. et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol. Oncol. 71, 270–277 (1998). (PMID: 10.1006/gyno.1998.5163)
Mekhail, K., Gunaratnam, L., Bonicalzi, M.-E. & Lee, S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat. Cell Biol. 6, 642–647 (2004). (PMID: 10.1038/ncb1144)
Glogowska, E. et al. Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood 130, 1845–1856 (2017). (PMID: 10.1182/blood-2017-05-786004)
Miyamoto, T. et al. Functional role for Piezo1 in stretch-evoked Ca 2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem. 289, 16565–16575 (2014). (PMID: 10.1074/jbc.M113.528638)
Stow, L. R., Jacobs, M. E., Wingo, C. S. & Cain, B. D. Endothelin-1 gene regulation. FASEB J. 25, 16–28 (2011). (PMID: 10.1096/fj.10-161612)
Li, M. et al. Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells. FEBS Lett. 586, 3888–3893 (2012). (PMID: 10.1016/j.febslet.2012.08.036)
Liu, Y. V. et al. Calcineurin promotes hypoxia-inducible factor 1α expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J. Biol. Chem. 282, 37064–37073 (2007). (PMID: 10.1074/jbc.M705015200)
Cheng, T.-H. et al. Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J. Mol. Cell. Cardiol. 33, 1805–1814 (2001). (PMID: 10.1006/jmcc.2001.1444)
Bailis, W. et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 571, 403–407 (2019). (PMID: 10.1038/s41586-019-1311-3)
Lindsey, A. S. et al. Analysis of pulmonary vascular injury and repair during Pseudomonas aeruginosa infection-induced pneumonia and acute respiratory distress syndrome. Pulm. Circ. 9, 1–13 (2019). (PMID: 10.1177/2045894019826941)
Novak, J., Georgakoudi, I., Wei, X., Prossin, A. & Lin, C. P. In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt. Lett. 29, 77–79 (2004). (PMID: 10.1364/OL.29.000077)
Abram, C. L., Roberge, G. L., Hu, Y. & Lowell, C. A. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J. Immunol. Methods 408, 89–100 (2014). (PMID: 10.1016/j.jim.2014.05.009)
Mack, M. et al. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol. 166, 4697–4704 (2001). (PMID: 10.4049/jimmunol.166.7.4697)
Phillips, J. E. et al. Bleomycin induced lung fibrosis increases work of breathing in the mouse. Pulm. Pharmacol. Ther. 25, 281–285 (2012). (PMID: 10.1016/j.pupt.2011.10.001)
Ashcroft, T., Simpson, J. M. & Timbrell, V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 41, 467–470 (1988). (PMID: 10.1136/jcp.41.4.467)
Wu, J. et al. Inactivation of mechanically activated Piezo1 ion channels is determined by the C-terminal extracellular domain and the inner pore helix. Cell Rep. 21, 2357–2366 (2017). (PMID: 10.1016/j.celrep.2017.10.120)
Abshire, M. Y., Thomas, K. S., Owen, K. A. & Bouton, A. H. Macrophage motility requires distinct α5β1/FAK and α4β1/paxillin signaling events. J. Leukoc. Biol. 89, 251–257 (2011). (PMID: 10.1189/jlb.0710395)
Young, S. R. L., Gerard-O’Riley, R., Kim, J.-B. & Pavalko, F. M. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24, 411–424 (2009). (PMID: 10.1359/jbmr.081102)
Bassotti, G. et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J. Gastroenterol. 20, 37–44 (2014). (PMID: 10.3748/wjg.v20.i1.37)
Rajamäki, K. et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J. Biol. Chem. 288, 13410–13419 (2013). (PMID: 10.1074/jbc.M112.426254) - Grant Information: R01 GM122984 United States GM NIGMS NIH HHS; R01 HL075092 United States HL NHLBI NIH HHS; T32 GM007499 United States GM NIGMS NIH HHS; UL1 TR001863 United States TR NCATS NIH HHS
- Accession Number: 0 (Endothelin-1)
0 (Hif1a protein, mouse)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
0 (Ion Channels)
0 (Piezo1 protein, mouse)
EC 2.7.11.24 (JNK Mitogen-Activated Protein Kinases) - Publication Date: Date Created: 20190823 Date Completed: 20200330 Latest Revision: 20220417
- Publication Date: 20231215
- Accession Number: PMC6939392
- Accession Number: 10.1038/s41586-019-1485-8
- Accession Number: 31435009
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.