Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 0411011 Publication Model: Print Cited Medium: Internet ISSN: 1362-4962 (Electronic) Linking ISSN: 03051048 NLM ISO Abbreviation: Nucleic Acids Res Subsets: MEDLINE
    • Publication Information:
      Publication: 1992- : Oxford : Oxford University Press
      Original Publication: London, Information Retrieval ltd.
    • Subject Terms:
    • Abstract:
      The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.
      (© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.)
    • References:
      BMC Genomics. 2017 Feb 15;18(1):168. (PMID: 28201993)
      Nat Microbiol. 2019 Apr;4(4):656-662. (PMID: 30692669)
      Cell. 2016 Feb 11;164(4):710-21. (PMID: 26853474)
      BMC Microbiol. 2006 Mar 06;6:23. (PMID: 16519816)
      Immunity. 2017 Mar 21;46(3):433-445. (PMID: 28329705)
      Mol Cell. 2016 Apr 21;62(2):295-306. (PMID: 27105119)
      PLoS One. 2017 Apr 25;12(4):e0176221. (PMID: 28441427)
      Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. (PMID: 28985291)
      Nucleic Acids Res. 2018 Nov 2;46(19):10319-10330. (PMID: 30239876)
      Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1884-9. (PMID: 21984678)
      Mol Cell. 2011 Jun 24;42(6):817-25. (PMID: 21700226)
      Elife. 2018 Jul 02;7:. (PMID: 29963983)
      Nat Rev Microbiol. 2015 Nov;13(11):722-36. (PMID: 26411297)
      Pathog Dis. 2018 Jul 1;76(5):. (PMID: 29905867)
      J Biol Chem. 2019 Jun 28;294(26):10290-10299. (PMID: 31110048)
      Cell. 2015 May 21;161(5):1164-1174. (PMID: 25959775)
      Mol Cell. 2013 Oct 10;52(1):124-34. (PMID: 24119402)
      Cell. 2016 Jan 14;164(1-2):29-44. (PMID: 26771484)
      RNA Biol. 2019 Apr;16(4):449-460. (PMID: 29995577)
      Genes Dev. 2016 Feb 15;30(4):447-59. (PMID: 26848045)
      RNA. 2016 Feb;22(2):216-24. (PMID: 26647461)
      Mol Cell. 2014 Nov 20;56(4):506-17. (PMID: 25458845)
      Cell Rep. 2013 Nov 27;5(4):1121-31. (PMID: 24268774)
      PLoS One. 2017 Jan 23;12(1):e0170552. (PMID: 28114398)
      Elife. 2015 Aug 18;4:. (PMID: 26284603)
      RNA. 2016 Mar;22(3):318-29. (PMID: 26763118)
      Nucleic Acids Res. 2017 Feb 28;45(4):1983-1993. (PMID: 27986854)
      Science. 2017 Aug 11;357(6351):605-609. (PMID: 28663439)
      RNA. 2019 Aug;25(8):948-962. (PMID: 31076459)
      Genes Dev. 2016 Feb 15;30(4):460-70. (PMID: 26848046)
      Protein Expr Purif. 2009 Feb;63(2):102-11. (PMID: 18845260)
      Genes Dev. 2014 Nov 1;28(21):2432-43. (PMID: 25367038)
      FASEB J. 2019 Jan;33(1):1496-1509. (PMID: 29979631)
      Nat Chem Biol. 2017 Feb;13(2):210-217. (PMID: 28106876)
      Nature. 2018 Oct;562(7726):277-280. (PMID: 30232454)
      Mol Cell. 2014 Nov 20;56(4):518-30. (PMID: 25457165)
      Mol Microbiol. 2013 Mar;87(5):1088-99. (PMID: 23320564)
      Front Genet. 2014 Apr 30;5:102. (PMID: 24817877)
      J Bacteriol. 2014 Jan;196(2):310-7. (PMID: 24187086)
      Nature. 2019 Mar;567(7747):194-199. (PMID: 30787435)
      Nature. 2017 Aug 31;548(7669):543-548. (PMID: 28722012)
      PLoS Comput Biol. 2005 Nov;1(6):e60. (PMID: 16292354)
      J Mol Biol. 2019 Jul 12;431(15):2894-2899. (PMID: 31071326)
      Methods Enzymol. 2019;616:191-218. (PMID: 30691643)
      J Bacteriol. 2018 Mar 26;200(8):. (PMID: 29378893)
      Proteins. 2013 Feb;81(2):261-70. (PMID: 22987782)
      Structure. 2015 Apr 7;23(4):782-90. (PMID: 25773141)
      Trends Biochem Sci. 2015 Jan;40(1):58-66. (PMID: 25468820)
      Nucleic Acids Res. 2016 Feb 29;44(4):1789-99. (PMID: 26801642)
    • Grant Information:
      BB/S000313/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
    • Accession Number:
      0 (Adenine Nucleotides)
      0 (CRISPR-Associated Proteins)
      0 (Oligoribonucleotides)
      61172-40-5 (2',5'-oligoadenylate)
    • Publication Date:
      Date Created: 20190809 Date Completed: 20191210 Latest Revision: 20230606
    • Publication Date:
      20230606
    • Accession Number:
      PMC6755085
    • Accession Number:
      10.1093/nar/gkz676
    • Accession Number:
      31392987