Menu
×
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The role of the fibroblast growth factor family in bone-related diseases.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Wang J;Wang J;Wang J; Liu S; Liu S; Li J; Li J; Yi Z; Yi Z
- Source:
Chemical biology & drug design [Chem Biol Drug Des] 2019 Oct; Vol. 94 (4), pp. 1740-1749. Date of Electronic Publication: 2019 Aug 04.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262549 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1747-0285 (Electronic) Linking ISSN: 17470277 NLM ISO Abbreviation: Chem Biol Drug Des Subsets: MEDLINE
- Publication Information: Original Publication: Oxford : Wiley-Blackwell, 2006-
- Subject Terms: Cell Differentiation* ; Cell Proliferation*; Bone Diseases/*metabolism ; Bone Marrow Cells/*metabolism ; Fibroblast Growth Factors/*metabolism ; Mesenchymal Stem Cells/*metabolism; Bone Diseases/drug therapy ; Bone Diseases/pathology ; Bone Marrow Cells/pathology ; Fibroblast Growth Factor-23 ; Humans ; Mesenchymal Stem Cells/pathology
- Abstract: Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
(© 2019 John Wiley & Sons A/S.) - References: Armand, A. S., Laziz, I., & Chanoine, C. (2006). Fgf6 in myogenesis. Biochimica et Biophysica Acta, 1763(8), 773-778. https://doi.org/10.1016/j.bbamcr.2006.06.005.
Bacchetta, J., Bardet, C., & Prié, D.( 2019). Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism. pii: S0026-0495(19)30021-6. https://doi.org/10.1016/j.metabol.2019.01.006.
Balek, L., Gudernova, I., Vesela, I., Hampl, M., Oralova, V., Kunova Bosakova, M., … Krejci, P. (2017). Arq 087 inhibits fgfr signaling and rescues aberrant cell proliferation and differentiation in experimental models of craniosynostoses and chondrodysplasias caused by activating mutations in fgfr1, fgfr2 and fgfr3. Bone, 105, 57-66. https://doi.org/10.1016/j.bone.2017.08.016.
Barnard, J. C., Williams, A. J., Rabier, B., Chassande, O., Samarut, J., Cheng, S. Y., … Williams, G. R. (2005). Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. Endocrinology, 146(12), 5568-5580. https://doi.org/10.1210/en.2005-0762.
Blunt, A. G., Lawshe, A., Cunningham, M. L., Seto, M. L., Ornitz, D. M., & Macarthur, C. A. (1997). Overlapping expression and redundant activation of mesenchymal fibroblast growth factor (fgf) receptors by alternatively spliced fgf-8 ligands. Journal of Biological Chemistry, 272(6), 3733-3738. https://doi.org/10.1074/jbc.272.6.3733.
Bosetti, M., Leigheb, M., Brooks, R. A., Boccafoschi, F., & Cannas, M. F. (2010). Regulation of osteoblast and osteoclast functions by fgf-6. Journal of Cellular Physiology, 225(2), 466-471. https://doi.org/10.1002/jcp.22225.
Böttcher, R. T., & Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocrine Reviews, 26(1), 63-77. https://doi.org/10.1210/er.2003-0040.
Britto, J. A., Chan, C. T., Evans, R. D., Hayward, R. D., & Jones, B. M. (2001). Differential expression of fibroblast growth factor receptors in human digital development suggests common pathogenesis in complex acrosyndactyly and craniosynostosis. Plastic and Reconstructive Surgery, 107(6), 1331-1338. https://doi.org/10.1097/00006534-200105000-00001.
Britto, J. A., Moore, R. L., Evans, R. D., Hayward, R. D., & Jones, B. M. (2001). Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of apert (p253r mutation) and pfeiffer (c278f mutation) syndromes and suggesting a basis for differences in their cranial phenotypes. Journal of Neurosurgery, 95(4), 660-673. https://doi.org/10.3171/jns.2001.95.4.0660.
Chen, J. H., Xue, S., Li, S., Wang, Z. L., Yang, H., Wang, W., … Chen, C. (2012). Oxidant damage in kashin-beck disease and a rat kashin-beck disease model by employing t-2 toxin treatment under selenium deficient conditions. Journal of Orthopaedic Research, 30(8), 1229-1237. https://doi.org/10.1002/jor.22073.
Ellsworth, J. L., Berry, J., Bukowski, T., Claus, J., Feldhaus, A., Holderman, S., … Hughes, S. D. (2002). Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage, 10(4), 308-320. https://doi.org/10.1053/joca.2002.0514.
Eswarakumar, V. P., Monsonegoornan, E., Pines, M., Antonopoulou, I., Morrisskay, G. M., & Lonai, P. (2002). The iiic alternative of fgfr2 is a positive regulator of bone formation. Development, 129(16), 3783-3793. https://doi.org/10.1101/gad.1008902.
Fisher, F. M., & Maratosflier, E. (2016). Understanding the physiology of fgf21. Annual Review of Physiology, 78(1), 223-241. https://doi.org/10.1146/annurev-physiol-021115-105339.
Fukumoto, S. (2010). Fgf23: phosphate metabolism and beyond. Ibms Bonekey, 7(8), 268-278. https://doi.org/10.1138/20100458.
Guo, X., Ma, W. J., Zhang, F., Ren, F. L., Qu, C. J., & Lammi, M. J. (2014). Recent advances in the research of an endemic osteochondropathy in china: Kashin-beck disease. Osteoarthritis Cartilage, 22(11), 1774-1783. https://doi.org/10.1016/j.joca.2014.07.023.
Hamidouche, Z., Fromigué, O., Nuber, U., Vaudin, P., Pages, J. C., Ebert, R., … Marie, P. J. (2010). Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells. Journal of Cellular Physiology, 224(2), 509-515. https://doi.org/10.1016/j.bone.2010.01.125.
Harmer, N. J., Robinson, C. J., Adam, L. E., Ilag, L. L., Robinson, C. V., Gallagher, J. T., & Blundell, T. L. (2006). Multimers of the fibroblast growth factor (fgf)-fgf receptor-saccharide complex are formed on long oligomers of heparin. Biochemical Journal, 393(3), 741-748. https://doi.org/10.1042/BJ20050985.
Hernández-Martínez, Rocio., Castro-Obregon, S., & Covarrubias, L. (2007). Fgf8 and retinoic acid control the initiation of interdigital cell death without the direct participation of bmp7 in the mouse limb. Developmental Biology, 306(1), 447-448. https://doi.org/10.1016/j.ydbio.2007.03.513.
Hu, M. C., Qiu, W. R., Wang, Y. P., Hill, D., Ring, B. D., Scully, S., … Danilenko, D. M. (1998). Fgf-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Molecular and Cellular Biology, 18(10), 6063-6074. https://doi.org/10.1128/mcb.18.10.6063.
Hung, I. H., Yu, K., Lavine, K. J., & Ornitz, D. M. (2007). Fgf9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Developmental Biology, 307(2), 300-313. https://doi.org/10.1016/j.ydbio.2007.04.048.
Im, H. J., Li, X., Muddasani, P., Kim, G. H., Davis, F., Rangan, J., … Thonar, E. J. (2008). Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. Journal of Cellular Physiology, 215(2), 452-463. https://doi.org/10.1002/jcp.21317.
Im, H. J., Muddasani, P., Natarajan, V., Schmid, T. M., Block, J. A., Davis, F., … Loeser, R. F. (2007). Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase c? pathways in human adult articular chondrocytes. Journal of Biological Chemistry, 282(15), 11110-11121. https://doi.org/10.1074/jbc.M609040200.
Inagaki, T., Lin, V. Y., Goetz, R., Mohammadi, M., Mangelsdorf, D. J., & Kliewer, S. A. (2008). Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metabolism, 8(1), 77-83. https://doi.org/10.1016/j.cmet.2008.05.006.
Ishibe, T. (2006). Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: Potential application of signal inhibitors to molecular target therapy. Clinical Cancer Research an Official Journal of the American Association for Cancer Research, 11(7), 2702-2712. https://doi.org/10.1158/1078-0432.CCR-04-2057.
Itoh, N., Konishi, M., & Ohta, H. (2011). Fgf10 and fgf21 as regulators in adipocyte development and metabolism. Endocrine, Metabolic & Immune Disorders: Drug Targets, 11(4), 302-309. https://doi.org/10.2174/187153011797881166.
Jones, N. C., Fedorov, Y. V., Rosenthal, R. S., & Olwin, B. B. (2001). Erk1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. Journal of Cellular Physiology, 186(1), 104-115. https://doi.org/10.1002/1097-4652(200101)186:1<104:aid-jcp1015>3.0.co;2-0.
Jump, S. S., Childs, T. E., Zwetsloot, K. A., Booth, F. W., & Lees, S. J. (2009). Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats. Experimental Physiology, 94(6), 739-748. https://doi.org/10.1113/expphysiol.2008.046136.
Kan, S. H., Elanko, N., Johnson, D., Cornejo-Roldan, L., Cook, J., Reich, E. W., … Wilkie, A. O. (2002). Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. American Journal of Human Genetics, 70(2), 472-486. https://doi.org/10.1086/338758.
Kapadia, R. M., Guntur, A. R., Reinhold, M. I., & Naski, M. C. (2005). Glycogen synthase kinase 3 controls endochondral bone development: Contribution of fibroblast growth factor 18. Developmental Biology, 285(2), 496-507. https://doi.org/10.1016/j.ydbio.2005.07.029.
Kelpke, S. S., Zinn, K. R., Rue, L. W., & Thompson, J. A. (2004). Site-specific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo. Journal of Biomedical Materials Research Part A, 71A(2), 316-325. https://doi.org/10.1002/jbm.a.30163.
Kubicky, R. A., Wu, S., Kharitonenkov, A., & De Luca, F. (2012). Role of fibroblast growth factor 21 (fgf21) in undernutrition-related attenuation of growth in mice. Endocrinology, 153(5), 2287-2295. https://doi.org/10.1210/en.2011-1909.
Le Blanc, S., Simann, M., Jakob, F., Schütze, N., & Schilling, T. (2015). Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3d collagen gels. Experimental Cell Research, 338(2), 136-148. https://doi.org/10.1016/j.yexcr.2015.09.009.
Li, Y., Mangasarian, K., Mansukhani, A., & Basilico, C. (1997). Activation of fgf receptors by mutations in the transmembrane domain. Oncogene, 14(12), 1397-1406. https://doi.org/10.1038/sj.onc.1200983.
Liu, H., Fang, Q., Wang, M., Wang, W., Zhang, M., Zhang, D., … Chen, J. (2018). Fgf8 and fgfr3 are up-regulated in hypertrophic chondrocytes: Association with chondrocyte death in deep zone of kashin-beck disease. Biochemical and Biophysical Research Communications, 500(2), 184-190. https://doi.org/10.1016/j.bbrc.2018.04.023.
Liu, Z., Xu, J., Colvin, J. S., & Ornitz, D. M. (2002). Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes & Development, 16(7), 859-869. https://doi.org/10.1101/gad.965602.
Lohmander, L. S., Hellot, S., Dreher, D., Krantz, E. F. W., Kruger, D. S., Guermazi, A., & Eckstein, F. (2014). Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: A randomized, double-blind, placebo-controlled trial. Arthritis & Rheumatology, 66(7), 1820-1831. https://doi.org/10.1002/art.38614.
Macarthur, C. A., Lawshé, A., Xu, J. S., Santos-Ocampo, S., & Ornitz, D. M. (1995). Fgf-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development, 121(11), 3603-3613. https://doi.org/10.1101/gad.9.22.2859.
Mahmood, R., Bresnick, J., Hornbruch, A., Mahony, C., Morton, N., Colquhoun, K., … Mason, I. (1995). A role for fgf-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Current Opinion in Cell Biology, 5(7), 797-806. https://doi.org/10.1016/S0960-9822(95)00157-6.
Marie, P. J. (2003). Fibroblast growth factor signaling controlling osteoblast differentiation. Gene, 316(1), 23-32. https://doi.org/10.1016/S0378-1119(03)00748-0.
Marie, P. J., Miraoui, H., & Sévère, Nicolas. (2012). Fgf/fgfr signaling in bone formation: Progress and perspectives. Growth Factors, 30(2), 117-123. https://doi.org/10.3109/08977194.2012.656761.
Minina, E., Schneider, S., Rosowski, M., Lauster, R., & Vortkamp, A. (2005). Expression of fgf and tgfβ signaling related genes during embryonic endochondral ossification. Gene Expression Patterns Gep, 6(1), 102-109. https://doi.org/10.1016/j.modgep.2005.04.012.
Moerlooze, L. D., & Dickson, C. (1997). Skeletal disorders associated with fibroblast growth factor receptor mutatios. Current Opinion in Genetics & Development, 7(3), 378-385. https://doi.org/10.1016/S0959-437X(97)80152-9.
Montarras, D., L'honoré, Aurore., & Buckingham, M. (2013). Lying low but ready for action: The quiescent muscle satellite cell. FEBS Journal, 280(17), 4036-4050. https://doi.org/10.1111/febs.12372.
Moore, E. E., Bendele, A. M., Thompson, D. L., Littau, A., Waggie, K. S., Reardon, B., & Ellsworth, J. L. (2005). Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage, 13(7), 623-631. https://doi.org/10.1016/j.joca.2005.03.003.
Ohbayashi, N. (2002). Fgf18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes & Development, 16(7), 870-879. https://doi.org/10.1101/gad.965702.
Ohuchi, H., Yoshioka, H., Tanaka, A., Kawakami, Y., Nohno, T., & Noji, S. (1994). Involvement of androgen-induced growth factor (fgf-8) gene in mouse embryogenesis and morphogenesis. Biochemical & Biophysical Research Communications, 204(2), 882-888. https://doi.org/10.1006/bbrc.1994.2542.
Ornitz, D. M. (2001). Regulation of chondrocyte growth and differentiation by fibroblast growth factor receptor 3. Novartis Foundation Symposium, 232, 63-76; discussion 76-80, 272-82. https://doi.org/10.1002/0470846658.ch6.
Ornitz, D. M. (2005). Fgf signaling in the developing endochondral skeleton. Cytokine & Growth Factor Reviews, 16(2), 205-213. https://doi.org/10.1016/j.cytogfr.2005.02.003.
Pawlikowski, B., Vogler, T. O., Gadek, K., & Olwin, B. B. (2017). Regulation of skeletal muscle stem cells by fibroblast growth factors. Developmental Dynamics, 246(5), 359-367. https://doi.org/10.1002/dvdy.24495.
Price, J. S., Waters, J. G., Darrah, C., Pennington, C., Edwards, D. R., Donell, S. T., & Clark, I. M. (2002). The role of chondrocyte senescence in osteoarthritis. Aging Cell, 1(1), 57-65. https://doi.org/10.1046/j.1474-9728.2002.00008.x.
Reiff, D. A., Kelpke, S., Rue, L., & Thompson, J. A. (2001). Acidic fibroblast growth factor attenuates the cytotoxic effects of peroxynitrite in primary human osteoblast precursors. The Journal of Trauma: Injury, Infection, and Critical Care, 50(3), 433-439. https://doi.org/10.1097/00005373-200103000-00006.
Reinhold, M. I., Abe, M., Kapadia, R. M., Liao, Z., & Naski, M. C. (2004). Fgf18 represses noggin expression and is induced by calcineurin. Journal of Biological Chemistry, 279(37), 38209-38219. https://doi.org/10.1074/jbc.M404855200.
Rhee, Y., Bivi, N., Farrow, E., Lezcano, V., Plotkin, L. I., White, K. E., & Bellido, T. (2011). Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone, 49(4), 636-643. https://doi.org/10.1016/j.bone.2011.06.025.
Saji, F., Shiizaki, K., Shimada, S., Okada, T., Kunimoto, K., Sakaguchi, T., … Shigematsu, T. (2009). Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron, 111(4), 61-p68. https://doi.org/10.1159/000210389.
Sapir-Koren, R., & Livshits, G. (2011). Bone mineralization and regulation of phosphate homeostasis. IBMS BoneKEy, 8(6), 286-300. https://doi.org/10.1138/20110516.
Schmal, H., Zwingmann, J., Fehrenbach, M., Finkenzeller, G., Stark, G. B., Südkamp, N. P., … Mehlhorn, A. T. (2007). Bfgf influences human articular chondrocyte differentiation. Cytotherapy, 9(2), 184-193. https://doi.org/10.1080/14653240601182846.
Schmidt, L., Taiyab, A., Melvin, V. S., Jones, K. L., & Williams, T. (2018). Increased fgf8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Disease Models & Mechanisms, 11(6), pii: dmm031526. https://doi.org/10.1242/dmm.031526.
Schmidt, L. J., & Tindall, D. J. (2011). Steroid 5 α-reductase inhibitors targeting BPH and prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 32-8. https://doi.org/10.1016/j.jsbmb.2010.09.003.
Shimoaka, T., Ogasawara, T., Yonamine, A., Chikazu, D., Kawano, H., Nakamura, K., … Kawaguchi, H. (2002). Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (fgf)-18 in comparison with fgf-2 and fgf-10. Journal of Biological Chemistry, 277(9), 7493-7500. https://doi.org/10.1074/jbc.m108653200.
Sonal, D. (2001). Prevention of igf-1 and tgfbeta stimulated type ii collagen and decorin expression by bfgf and identification of igf-1 mrna transcripts in articular chondrocytes. Matrix Biology, 20(4), 233-242. https://doi.org/10.1016/S0945-053X(01)00140-8.
Su, W. C., Kitagawa, M., Xue, N., Xie, B., Garofalo, S., Cho, J., … Fu, X. Y. (1997). Activation of statl by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type ii dwarfism. Nature, 386(6622), 288-292. https://doi.org/10.1038/386288a0.
Takeshi, K., Tomonori, O., Kaori, F., Akihiro, Y., Miho, M., Keiichi, O., & Tsumaki, N. (2018). Proposal of patient-specific growth plate cartilage xenograft model for fgfr3 chondrodysplasia. Osteoarthritis Cartilage, 26(11), 1551-1561. https://doi.org/10.1016/j.joca.2018.07.015.
Tanaka, A., Miyamoto, K., Minamino, N., Takeda, M., Sato, B., & Matsuo, H. (1992). Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 8928-8932.
Tedesco, F. S., Deiiavaiie, A., Diaz-Manera, J., Messina, G., & Cossu, G. (2010). Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. Journal of Clinical Investigation, 120(1), 11-19. https://doi.org/10.1172/JCI40373.
Teitelbaum, S. L., & Ross, F. P. (2003). Genetic regulation of osteoclast development and function. Nature Reviews Genetics, 4(8), 638-649. https://doi.org/10.1038/nrg1122.
Tenenhouse, H. S. (2007). Phosphate transport: Molecular basis, regulation and pathophysiology. Journal of Steroid Biochemistry and Molecular Biology, 103(3-5), 572-577. https://doi.org/10.1016/j.jsbmb.2006.12.090.
Teven, C. M., Farina, E. M., Rivas, J., & Reid, R. R. (2014). Fibroblast growth factor (fgf) signaling in development and skeletal diseases. Genes & Diseases, 1(2), 199-213. https://doi.org/10.1016/j.gendis.2014.09.005.
Uchii, M., Tamura, T., Suda, T., Kakuni, M., Tanaka, A., & Miki, A. I. (2008). Role of fibroblast growth factor 8 (fgf8) in animal models of osteoarthritis. Arthritis Research & Therapy, 10(4), R90-R90. https://doi.org/10.1186/ar2474.
Valta, M. P., Hentunen, T., Qu, Q., Valve, E. M., Harjula, A., Seppänen, J. A., … Härkönen, P. L. (2006). Regulation of osteoblast differentiation: A novel function for fibroblast growth factor 8. Endocrinology, 147(5), 2171-2182. https://doi.org/10.1210/en.2005-1502.
Valverde-Franco, G., Liu, H., Davidson, D., Chai, S., & Hector, V. C. (2004). Defective bone mineralization and osteopenia in young adult fgfr3-/- mice. Human Molecular Genetics, 13(3), 271-284. https://doi.org/10.1093/hmg/ddh034.
Viklund, L., Vorontsova, N., Henttinen, T., & Salmivirta, M. (2006). Syndecan-1 regulates fgf8b responses in s115 mammary carcinoma cells. Growth Factors, 24(2), 151-157. https://doi.org/10.1080/08977190600699426.
Wang, S. X., Bendele, A. M., & Moore, E. M. (2012). The chondroprotective effect of fgf9 in an experiment model of osteoarthritis. Osteoarthritis Cartilage, 20(Suppl 1), S40-S41. https://doi.org/10.1016/j.joca.2012.02.576.
Wang, Y. X., Dumont, N. A., & Rudnicki, M. A. (2014). Muscle stem cells at a glance. Journal of Cell Science, 127(21), 4543-4548. https://doi.org/10.1242/jcs.151209.
Wang, Z., Huang, J., Zhou, S., Luo, F., Tan, Q., Sun, X., … Chen, L. (2018). Loss of fgfr1 in chondrocytes inhibits osteoarthritis through promoting autophagic activity in temporomandibular joint. Journal of Biological Chemistry, 293(23), 8761-8774. https://doi.org/10.1074/jbc.RA118.002293.
Wang, H., Yoshiko, Y., Yamamoto, R., Minamizaki, T., Kozai, K., Tanne, K., … Maeda, N. (2010). Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. Journal of Bone & Mineral Research, 23(6), 939-948. https://doi.org/10.1359/jbmr.080220.
Wei, W., Dutchak, P. A., Wang, X., Ding, X., Wang, X., Bookout, A. L., … Wan, Y. (2012). Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. National Academy Science Letters, 109(8), 3143-3148. https://doi.org/10.1073/pnas.1200797109.
Wen, X., Li, X., Tang, Y., Tang, J., Zhou, S., Xie, Y., … Chen, L. (2011). Chondrocyte fgfr3 regulates bone mass by inhibiting osteogenesis. Journal of Biological Chemistry, 291(48), 24912-24921. https://doi.org/0.1074/jbc.M116.730093.
Wu, X. L., Gu, M. M., Huang, L., Liu, X. S., Zhang, H. X., Ding, X. Y., … Wang, Z. G. (2009). Multiple synostoses syndrome is due to a missense mutation in exon 2 of fgf9 gene. American Journal of Human Genetics, 85(1), 53-63. https://doi.org/10.1016/j.ajhg.2009.06.007.
Wu, L., Leijten, J., van Blitterswijk, C. A., & Karperien, M. (2013). Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture. Stem Cells & Development, 21(17), S273-S273. https://doi.org/10.1016/j.joca.2013.02.572.
Yamamoto, H., Ramos-Molina, B., Lick, A. N., Prideaux, M., Albornoz, V., & Bonewald, L. (2016). Posttranslational processing of fgf23 in osteocytes during the osteoblast to osteocyte transition. Bone, 84, 120-130. https://doi.org/10.1016/j.bone.2015.12.055.
Yamamuro, T. (2001). Kashin-beck disease: A historical overview. International Orthopaedics, 25(3), 134-137. https://doi.org/10.1007/s002640000178.
Yan, D., Chen, D., Cool, S. M., van Wijnen, A. J., Mikecz, K., Murphy, G., & Im, H. J. (2011). Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Research & Therapy, 13(4), R130. https://doi.org/10.1186/ar3441.
Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93(1), 23-67. https://doi.org/10.1152/physrev.00043.2011.
Yoshiko, Y., Wang, H., Minamizaki, T., Ijuin, C., Yamamoto, R., Suemune, S., … Maeda, N. (2007). Mineralized tissue cells are a principal source of fgf23. Bone, 40(6), 1565-1573. https://doi.org/10.1016/j.bone.2007.01.017.
Zamli, Z., Robson Brown, K., Tarlton, J. F., Adams, M. A., Torlot, G. E., Cartwright, C., … Sharif, M. (2014). Subchondral bone plate thickening precedes chondrocyte apoptosis and cartilage degradation in spontaneous animal models of osteoarthritis. Biomed Research International, 2014(6), 606870. https://doi.org/10.1155/2014/606870.
Zammit, P. S., Partridge, T. A., & Yablonka-Reuveni, Z. (2006). The skeletal muscle satellite cell: The stem cell that came in from the cold. Journal of Histochemistry and Cytochemistry, 54(11), 1177-1191. https://doi.org/10.1369/jhc.6r6995.2006.
Zhou, X., Wang, Z., Chen, J., Wang, W., Song, D., Li, S., … Chen, C. (2014). Increased levels of il-6, il-1β, and tnf-α in kashin-beck disease and rats induced by t-2 toxin and selenium deficiency. Rheumatology International, 34(7), 995-1004. https://doi.org/10.1007/s00296-013-2862-5.
Zou, W., Izawa, T., Zhu, T., Chappel, J., Otero, K., Monkley, S. J., … Teitelbaum, S. L. (2013). Talin1 and rap1 are critical for osteoclast function. Molecular and Cellular Biology, 33(4), 830-844. https://doi.org/10.1128/MCB.00790-12. - Contributed Indexing: Keywords: abnormal expression; bone-related diseases; fibroblast growth factor; targeted therapy
- Accession Number: 0 (FGF23 protein, human)
62031-54-3 (Fibroblast Growth Factors)
7Q7P4S7RRE (Fibroblast Growth Factor-23) - Publication Date: Date Created: 20190702 Date Completed: 20200819 Latest Revision: 20211204
- Publication Date: 20231215
- Accession Number: 10.1111/cbdd.13588
- Accession Number: 31260189
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.