Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yang Y;Yang Y; Liu Z; Liu Z; Selby CP; Selby CP; Sancar A; Sancar A
  • Source:
    The Journal of biological chemistry [J Biol Chem] 2019 Aug 09; Vol. 294 (32), pp. 11960-11968. Date of Electronic Publication: 2019 Jun 19.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
      Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
    • Subject Terms:
    • Abstract:
      Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.
      (© 2019 Yang et al.)
    • References:
      Carcinogenesis. 1999 Mar;20(3):395-9. (PMID: 10190552)
      Mol Cell Biol. 2000 Dec;20(24):9173-81. (PMID: 11094069)
      Genome Res. 2002 Jun;12(6):996-1006. (PMID: 12045153)
      J Biol Chem. 2004 Feb 27;279(9):7751-9. (PMID: 14672951)
      Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6582-6. (PMID: 15087501)
      Nat Rev Drug Discov. 2005 Apr;4(4):307-20. (PMID: 15789122)
      EMBO J. 2006 Jan 25;25(2):387-97. (PMID: 16407975)
      Nucleic Acids Res. 2006 Mar 29;34(6):e47. (PMID: 16571898)
      Mol Cell. 2006 Aug;23(4):471-82. (PMID: 16916636)
      Science. 2007 Feb 9;315(5813):859-62. (PMID: 17290000)
      Nat Rev Cancer. 2007 Aug;7(8):573-84. (PMID: 17625587)
      Annu Rev Pharmacol Toxicol. 2008;48:495-535. (PMID: 17937596)
      Cell Res. 2008 Jan;18(1):73-84. (PMID: 18166977)
      Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70. (PMID: 19023283)
      Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2864-7. (PMID: 19164551)
      Mol Cell. 2010 Jun 11;38(5):637-48. (PMID: 20541997)
      Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18790-5. (PMID: 22025708)
      Biochim Biophys Acta. 2013 Jan;1829(1):151-7. (PMID: 22960598)
      Elife. 2012 Nov 13;1:e00011. (PMID: 23150795)
      Trends Cell Biol. 2014 Feb;24(2):90-9. (PMID: 23916625)
      Genome Res. 2014 Jun;24(6):896-905. (PMID: 24714810)
      Biochemistry. 2015 Jan 20;54(2):110-23. (PMID: 25302769)
      Cell. 2014 Nov 20;159(5):1140-1152. (PMID: 25416951)
      Nucleic Acids Res. 2015 Mar 11;43(5):2744-56. (PMID: 25722371)
      Genes Dev. 2015 May 1;29(9):948-60. (PMID: 25934506)
      Biomolecules. 2015 Jul 21;5(3):1600-17. (PMID: 26197343)
      Nat Protoc. 2016 Mar;11(3):413-28. (PMID: 26844429)
      Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2124-33. (PMID: 27036006)
      Angew Chem Int Ed Engl. 2016 Jul 18;55(30):8502-27. (PMID: 27337655)
      Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11507-11512. (PMID: 27688757)
      J Biol Chem. 2017 Sep 22;292(38):15588-15597. (PMID: 28798238)
      Genes Dev. 2017 Jul 1;31(13):1289-1301. (PMID: 28808065)
      J Biol Chem. 2017 Nov 10;292(45):18386-18391. (PMID: 28986449)
      Nature. 2017 Nov 30;551(7682):653-657. (PMID: 29168508)
      Nat Commun. 2017 Dec 12;8(1):2076. (PMID: 29233992)
      J Biol Chem. 2018 Feb 16;293(7):2476-2486. (PMID: 29282293)
      Genes Dev. 2018 Jan 1;32(1):1-3. (PMID: 29440223)
      Nat Commun. 2018 Mar 12;9(1):1040. (PMID: 29531219)
      Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3408-E3415. (PMID: 29581276)
      Nat Commun. 2018 Apr 17;9(1):1503. (PMID: 29666379)
      Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4777-E4785. (PMID: 29735688)
      Nat Protoc. 2019 Jan;14(1):248-282. (PMID: 30552409)
      Nat Commun. 2019 Jan 18;10(1):309. (PMID: 30659176)
      Mol Cell. 2019 Apr 18;74(2):254-267.e10. (PMID: 30824372)
      Genes Dev. 2019 Jun 1;33(11-12):705-717. (PMID: 30948432)
      Annu Rev Biochem. 1996;65:43-81. (PMID: 8811174)
      J Natl Cancer Inst. 1996 Oct 2;88(19):1346-60. (PMID: 8827012)
      Nucleic Acids Res. 1997 Feb 15;25(4):787-93. (PMID: 9016630)
      J Biol Chem. 1997 Sep 19;272(38):23465-8. (PMID: 9295277)
    • Grant Information:
      P30 ES010126 United States ES NIEHS NIH HHS; R01 ES027255 United States ES NIEHS NIH HHS; R35 GM118102 United States GM NIGMS NIH HHS
    • Contributed Indexing:
      Keywords: DNA adduct; DNA damage; DNA repair; chemotherapy; chronotherapy; circadian clock; cisplatin; excision repair sequencing (XR-seq); kinetics; nucleotide excision repair; transcription-coupled repair
    • Accession Number:
      0 (DNA Adducts)
      0 (cisplatin-DNA adduct)
      Q20Q21Q62J (Cisplatin)
    • Publication Date:
      Date Created: 20190621 Date Completed: 20200316 Latest Revision: 20210317
    • Publication Date:
      20221213
    • Accession Number:
      PMC6690688
    • Accession Number:
      10.1074/jbc.RA119.009579
    • Accession Number:
      31217280