Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Regulation of Low and High Nucleic Acid Fluorescent Heterotrophic Prokaryote Subpopulations and Links to Viral-Induced Mortality Within Natural Prokaryote-Virus Communities.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Springer-Verlag Country of Publication: United States NLM ID: 7500663 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-184X (Electronic) Linking ISSN: 00953628 NLM ISO Abbreviation: Microb Ecol Subsets: MEDLINE
- Publication Information:
Original Publication: New York, Springer-Verlag.
- Subject Terms:
- Abstract:
Flow cytometric analysis of marine prokaryotes routinely reveals two distinct clusters of heterotrophic cells referred to as high nucleic acid fluorescent (HNA) and low nucleic acid fluorescent (LNA) populations. Evidence suggests that these may represent physiologically and ecologically distinct prokaryote populations. According to the "kill the winner" hypothesis, viral lysis reduces the efficiency of the microbial loop by decreasing the biomass and activity of the most abundant and active members of a population (i.e., competition specialist). Thus, viral-induced mortality may vary according to the physiology of HNA and LNA cells, with implications for the marine carbon cycle. Here, the abundance and production of heterotrophic prokaryotic populations were assessed in the North Atlantic during two phases of the annual plankton cycle and related to bottom-up (i.e., organic carbon variability) and top-down processes (i.e., viral abundance and lytic production). Our results demonstrate that the relative abundance of HNA and LNA heterotrophic cells and heterotrophic prokaryote production vary according to organic carbon variability in the water column, which can be strongly influenced by the physical eddy field (i.e., type of eddy: cyclonic, anticyclonic, or no eddy). In addition, the abundance and lytic production of virus subpopulations were correlated with the cellular production and abundance of heterotrophic HNA and LNA prokaryote communities. Our data suggest group- and activity-specific linkages between hosts and viruses (i.e., HNA-V1 and LNA-V2). Specifically, V1 had a greater contribution to total viral production (i.e., 2.6-fold higher than V2 viruses), similar to their putative host. Finally, we explore potential implications of group- and activity-specific linkages between host and virus groups on the flux of carbon through the microbial food web.
- References:
ACS Cent Sci. 2015 Jun 24;1(3):124-31. (PMID: 27162962)
Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114. (PMID: 10704475)
Environ Microbiol. 2014 Mar;16(3):871-87. (PMID: 24589288)
FEMS Microbiol Rev. 2004 May;28(2):127-81. (PMID: 15109783)
Appl Environ Microbiol. 2001 Nov;67(11):5210-8. (PMID: 11679347)
Ann Rev Mar Sci. 2012;4:449-66. (PMID: 22457983)
Nat Rev Microbiol. 2010 Jul;8(7):523-9. (PMID: 20531276)
Nat Rev Microbiol. 2007 Oct;5(10):801-12. (PMID: 17853907)
Environ Microbiol. 2010 Jan;12(1):74-82. (PMID: 19725866)
Front Microbiol. 2014 Sep 05;5:453. (PMID: 25250018)
Microb Ecol. 2011 Oct;62(3):669-78. (PMID: 21556883)
Science. 2005 Aug 19;309(5738):1242-5. (PMID: 16109880)
Environ Microbiol. 2006 May;8(5):827-35. (PMID: 16623740)
Environ Microbiol. 2014 Aug;16(8):2501-13. (PMID: 24428166)
ISME J. 2010 Aug;4(8):975-88. (PMID: 20357833)
Ann Rev Mar Sci. 2014;6:167-94. (PMID: 24079309)
Appl Environ Microbiol. 1996 Jun;62(6):1991-7. (PMID: 16535334)
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7550-5. (PMID: 23620519)
Appl Environ Microbiol. 2001 Apr;67(4):1775-82. (PMID: 11282632)
ISME J. 2013 Mar;7(3):672-9. (PMID: 23151645)
Annu Rev Microbiol. 2004;58:207-31. (PMID: 15487936)
Appl Environ Microbiol. 2000 Feb;66(2):455-66. (PMID: 10653704)
Appl Environ Microbiol. 1990 Mar;56(3):583-9. (PMID: 2107794)
ISME J. 2017 Jun;11(6):1460-1471. (PMID: 28106879)
Nature. 1999 Jun 10;399(6736):541-8. (PMID: 10376593)
Appl Environ Microbiol. 1999 Oct;65(10):4475-83. (PMID: 10508078)
Ann Rev Mar Sci. 2016;8:125-59. (PMID: 26359818)
Appl Environ Microbiol. 2005 Oct;71(10):5828-36. (PMID: 16204494)
Environ Microbiol. 2004 Jan;6(1):1-11. (PMID: 14686936)
Appl Environ Microbiol. 1998 Sep;64(9):3352-8. (PMID: 9726882)
Nat Rev Microbiol. 2005 Jul;3(7):537-46. (PMID: 15953930)
Environ Microbiol. 2007 Aug;9(8):2050-66. (PMID: 17635549)
Syst Appl Microbiol. 2011 Sep;34(6):470-5. (PMID: 21596506)
J Virol Methods. 2000 Mar;85(1-2):175-82. (PMID: 10716350)
Nature. 2013 Feb 21;494(7437):357-60. (PMID: 23407494)
Nature. 2001 Mar 15;410(6826):360-3. (PMID: 11268210)
FEMS Microbiol Ecol. 2009 Jan;67(1):43-56. (PMID: 19120458)
PLoS One. 2013 Nov 07;8(11):e76800. (PMID: 24244268)
Appl Environ Microbiol. 2005 Dec;71(12):7737-49. (PMID: 16332746)
Appl Environ Microbiol. 1999 Jan;65(1):45-52. (PMID: 9872758)
FEMS Microbiol Ecol. 2014 Sep;89(3):495-515. (PMID: 24754794)
Microbiol Mol Biol Rev. 2010 Mar;74(1):42-57. (PMID: 20197498)
ISME J. 2016 Mar;10(3):568-81. (PMID: 26262814)
Nature. 2005 Sep 15;437(7057):356-61. (PMID: 16163346)
ISME J. 2016 Feb;10(2):500-13. (PMID: 26262815)
PLoS Biol. 2006 Nov;4(11):e368. (PMID: 17090214)
ISME J. 2008 Jun;2(6):575-8. (PMID: 18385772)
Genome Biol. 2013 Nov 07;14(11):R123. (PMID: 24200126)
J Mol Microbiol Biotechnol. 1999 Aug;1(1):45-50. (PMID: 10941783)
Science. 2014 May 16;344(6185):757-60. (PMID: 24789974)
Microb Ecol. 2002 Jan;43(1):168-73. (PMID: 11984638)
Appl Environ Microbiol. 2001 Apr;67(4):1636-45. (PMID: 11282616)
- Grant Information:
NNX15AF30G United States NASA NASA; 1537943 National Science Foundation
- Contributed Indexing:
Keywords: Flow cytometry; High nucleic acid bacteria; Low nucleic acid bacteria; Marine viruses; Viral lysis
- Accession Number:
0 (Nucleic Acids)
7440-44-0 (Carbon)
- Publication Date:
Date Created: 20190605 Date Completed: 20200527 Latest Revision: 20200527
- Publication Date:
20221213
- Accession Number:
10.1007/s00248-019-01393-9
- Accession Number:
31161232
No Comments.