Critical role of the fibroblast growth factor signalling pathway in Ewing's sarcoma octamer-binding transcription factor 4-mediated cell proliferation and tumorigenesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
    • Subject Terms:
    • Abstract:
      Certain bone and soft tissue (BST) tumours harbour a chromosomal translocation [t(6;22)(p21;q12)], which fuses the Ewing's sarcoma (EWS) gene at 22q12 with the octamer-binding transcription factor 4 (Oct-4) gene at 6p21, resulting in the chimeric EWS-Oct-4 protein that possesses high transactivation ability. Although abnormal activation of signalling pathways can lead to human cancer development, the pathways underlying these processes in human BST tumours remain poorly explored. Here, we investigated the functional significance of fibroblast growth factor (FGF) signalling in human BST tumours. To identify the gene(s) involved in the FGF signalling pathway and potentially regulated by EWS-Oct-4 (also called EWS-POU5F1), we performed RNA-Seq analysis, electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and xenograft assays. Treating GBS6 or ZHBTc4 cells-expressing EWS-Oct-4 with the small molecule FGF receptor (FGFR) inhibitors PD173074, NVPBGJ398, ponatinib, and dovitinib suppressed cellular proliferation. Gene expression analysis revealed that, among 22 Fgf and four Fgfr family members, Fgf-4 showed the highest upregulation (by 145-fold) in ZHBTc4 cells-expressing EWS-Oct-4. Computer-assisted analysis identified a putative EWS-Oct-4-binding site at +3017/+3024, suggesting that EWS-Oct-4 regulates Fgf-4 expression in human BST tumours. Fgf-4 enhancer constructs showed that EWS-Oct-4 transactivated the Fgf-4 gene reporter in vitro, and that overexpression of EWS-Oct-4 stimulated endogenous Fgf-4 gene expression in vivo. Finally, PD173074 significantly decreased tumour volume in mice. Taken together, these data suggest that FGF-4 signalling is involved in EWS-Oct-4-mediated tumorigenesis, and that its inhibition impairs tumour growth in vivo significantly.
      (© 2019 Federation of European Biochemical Societies.)
    • Comments:
      Comment in: FEBS J. 2019 Nov;286(22):4418-4421. (PMID: 31400091)
    • References:
      Chin L, Hahn WC, Getz G & Meyerson M (2011) Making sense of cancer genomic data. Genes Dev 25, 534-555.
      Meyerson M, Gabriel S & Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11, 685-696.
      Rabbitts TH (1999) Perspective: chromosomal translocations can affect genes controlling gene expression and differentiation-why are these functions targeted? J Pathol 187, 39-42.
      Mertens F, Johansson B, Fioretos T & Mitelman F (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15, 371-381.
      Nussenzweig A & Nussenzweig MC (2010) Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27-38.
      Yamaguchi S, Yamazaki Y, Ishikawa Y, Kawaguchi N, Mukai H & Nakamura T (2005) EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosom Cancer 43, 217-222.
      Lee J, Kim JY, Kang IY, Kim HK, Han YM & Kim J (2007) The EWS-Oct-4 fusion gene encodes a transforming gene. Biochem J 406, 519-526.
      Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G et al. (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162-165.
      Paronetto MP (2013) Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol 2013, 642853.
      Kim J & Pelletier J (1999) Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1, 127-138.
      Sizemore GM, Pitarresi JR, Balakrishnan S & Ostrowski MC (2017) The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 17, 337-351.
      Lee KA (2007) Ewings family oncoproteins: drunk, disorderly and in search of partners. Cell Res 17, 286-288.
      Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH & Ladanyi M (1999) Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing's sarcoma. Cancer Res 59, 1428-1432.
      Brehm A, Ohbo K & Scholer H (1997) The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 17, 154-162.
      Pesce M & Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271-278.
      Ovitt CE & Scholer HR (1998) The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 4, 1021-1031.
      Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H & Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391.
      Abdel-Rahman B, Fiddler M, Rappolee D & Pergament E (1995) Expression of transcription regulating genes in human preimplantation embryos. Hum Reprod 10, 2787-2792.
      Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G et al. (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284.
      Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221.
      Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M & Jaenisch R (2008) A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346-353.
      Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT & Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105, 2883-2888.
      Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C & Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340-345.
      Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N & Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106.
      Okita K, Ichisaka T & Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317.
      Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K & Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134, 877-886.
      Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW & Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141-146.
      Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K & Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
      Takahashi K & Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
      Wernig M, Meissner A, Cassady JP & Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10-12.
      Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE & Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318-324.
      Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M et al. (2009) Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964-977.
      Monk M & Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20, 8085-8091.
      Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY et al. (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 3, e2637.
      Gidekel S, Pizov G, Bergman Y & Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361-370.
      Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, van Dekken H et al. (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63, 2244-2250.
      Palumbo C, van Roozendaal K, Gillis AJ, van Gurp RH, de Munnik H, Oosterhuis JW, van Zoelen EJ & Looijenga LH (2002) Expression of the PDGF alpha-receptor 1.5 kb transcript, OCT-4, and c-KIT in human normal and malignant tissues. Implications for the early diagnosis of testicular germ cell tumours and for our understanding of regulatory mechanisms. J Pathol 196, 467-477.
      Wang P, Branch DR, Bali M, Schultz GA, Goss PE & Jin T (2003) The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochem J 375, 199-205.
      Jin T, Branch DR, Zhang X, Qi S, Youngson B & Goss PE (1999) Examination of POU homeobox gene expression in human breast cancer cells. Int J Cancer 81, 104-112.
      Hochedlinger K, Yamada Y, Beard C & Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465-477.
      Turner N & Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10, 116-129.
      Szebenyi G & Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185, 45-106.
      Yamashita T, Yoshioka M & Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277, 494-498.
      Beenken A & Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8, 235-253.
      Brooks AN, Kilgour E & Smith PD (2012) Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 18, 1855-1862.
      Babina IS & Turner NC (2017) Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 17, 318-332.
      Presta M, Chiodelli P, Giacomini A, Rusnati M & Ronca R (2017) Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther 179, 171-187.
      Robertson SC, Tynan JA & Donoghue DJ (2000) RTK mutations and human syndromeswhen good receptors turn bad. Trends Genet 16, 265-271.
      Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM et al. (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26, 7158-7162.
      Zhao WM, Wang L, Park H, Chhim S, Tanphanich M, Yashiro M & Kim KJ (2010) Monoclonal antibodies to fibroblast growth factor receptor 2 effectively inhibit growth of gastric tumor xenografts. Clin Cancer Res 16, 5750-5758.
      Wesche J, Haglund K & Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437, 199-213.
      Thisse B & Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287, 390-402.
      Haugsten EM, Wiedlocha A, Olsnes S & Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8, 1439-1452.
      Tiong KH, Mah LY & Leong CO (2013) Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 18, 1447-1468.
      McLeskey SW, Kurebayashi J, Honig SF, Zwiebel J, Lippman ME, Dickson RB & Kern FG (1993) Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice. Cancer Res 53, 2168-2177.
      Souttou B, Gamby C, Crepin M & Hamelin R (1996) Tumoral progression of human breast epithelial cells secreting FGF2 and FGF4. Int J Cancer 68, 675-681.
      Kim S, Lee J, Kim JY, Lim B, Shin EK, Han YM, Kim SS, Song JH & Kim J (2009) Mutation in the DNA-binding domain of the EWS-Oct-4 oncogene results in dominant negative activity that interferes with EWS-Oct-4-mediated transactivation. Int J Cancer 124, 2312-2322.
      Brookes S, Smith R, Thurlow J, Dickson C & Peters G (1989) The mouse homologue of hst/k-FGF: sequence, genome organization and location relative to int-2. Nucleic Acids Res 17, 4037-4045.
      Niwa H, Miyazaki J & Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376.
      Niwa H, Masui S, Chambers I, Smith AG & Miyazaki J (2002) Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol Cell Biol 22, 1526-1536.
      Fujino T, Nomura K, Ishikawa Y, Makino H, Umezawa A, Aburatani H, Nagasaki K & Nakamura T (2010) Function of EWS-POU5F1 in sarcomagenesis and tumor cell maintenance. Am J Pathol 176, 1973-1982.
      Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B, Lemoine NR, Stamp GW, Aboagye EO & Seckl MJ (2009) The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res 69, 8645-8651.
      Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, Galsky MD, Wolf J, Dittrich C, Keam B, Delord JP et al. (2018) Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced Urothelial carcinoma with FGFR3 alterations. Cancer Discov 8, 812-821.
      Musumeci F, Greco C, Grossi G, Molinari A & Schenone S (2018) Recent studies on Ponatinib in cancers other than chronic myeloid leukemia. Cancers (Basel) 10.
      Katoh M (2016) FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 38, 3-15.
      Grose R & Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16, 179-186.
      Jerabek S, Merino F, Scholer HR & Cojocaru V (2014) OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim Biophys Acta 1839, 138-154.
      Lee J, Rhee BK, Bae GY, Han YM & Kim J (2005) Stimulation of Oct-4 activity by Ewing's sarcoma protein. Stem Cells 23, 738-751.
      Kim J, Lee JM, Branton PE & Pelletier J (1999) Modification of EWS/WT1 functional properties by phosphorylation. Proc Natl Acad Sci USA 96, 14300-14305.
      Kim J, Lee JM, Branton PE & Pelletier J (2000) Modulation of EWS/WT1 activity by the v-Src protein tyrosine kinase. FEBS Lett 474, 121-128.
      Knoop LL & Baker SJ (2000) The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem 275, 24865-24871.
      Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE & Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826.
      Hsu PD, Lander ES & Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.
      Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
      Calvo R & Drabkin HA (2000) Embryonic genes in cancer. Ann Oncol 11 (Suppl 3), 207-218.
      Kim J & Orkin SH (2011) Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Med 3, 75.
      Klauzinska M, Castro NP, Rangel MC, Spike BT, Gray PC, Bertolette D, Cuttitta F & Salomon D (2014) The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 29, 51-58.
      Beltran AS, Rivenbark AG, Richardson BT, Yuan X, Quian H, Hunt JP, Zimmerman E, Graves LM & Blancafort P (2011) Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor. Breast Cancer Res 13, R94.
      Wang YJ & Herlyn M (2015) The emerging roles of Oct4 in tumor-initiating cells. Am J Physiol Cell Physiol 309, C709-C718.
      Qureshi-Baig K, Ullmann P, Haan S & Letellier E (2017) Tumor-initiating cells: a criTICal review of isolation approaches and new challenges in targeting strategies. Mol Cancer 16, 40.
      Tsai LL, Hu FW, Lee SS, Yu CH, Yu CC & Chang YC (2014) Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition. PLoS ONE 9, e87207.
      Atlasi Y, Mowla SJ, Ziaee SA & Bahrami AR (2007) OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 120, 1598-1602.
      Green MR & Sambrook J (2012) Molecular Cloning: A Laboratory Manual, 4 edn. Cold Spring Harbor Laboratory Press, New York.
      Lim B, Jun HJ, Kim AY, Kim S, Choi J & Kim J (2012) The TFG-TEC fusion gene created by the t(3;9) translocation in human extraskeletal myxoid chondrosarcomas encodes a more potent transcriptional activator than TEC. Carcinogenesis 33, 1450-1458.
      Lee J, Kim HK, Rho JY, Han YM & Kim J (2006) The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 281, 33554-33565.
      Langmead B & Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359.
      Quinlan AR & Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
      Schmittgen TD & Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Prot 3, 1101-1108.
      Jensen MM, Christensen MS, Bonven B & Jensen TH (2008) Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae. FEBS J 275, 2956-2964.
      Euhus DM, Hudd C, LaRegina MC & Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31, 229-234.
      Tomayko MM & Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24, 148-154.
    • Grant Information:
      2016R1D1A1B03932300 International National Research Foundation (NRF) of Korea; 2018M3A9H1023139 International Bio & Medical Technology Development Program
    • Contributed Indexing:
      Keywords: EWS-Oct-4; FGF signalling; chromosomal translocation; fusion protein; human bone and soft tissue tumour
    • Accession Number:
      0 (4-amino-5-fluoro-3-(5-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl)quinolin-2(1H)-one)
      0 (Benzimidazoles)
      0 (FGF4 protein, human)
      0 (Fibroblast Growth Factor 4)
      0 (Imidazoles)
      0 (Octamer Transcription Factor-3)
      0 (Oncogene Proteins, Fusion)
      0 (PD 173074)
      0 (POU5F1 protein, human)
      0 (Pyridazines)
      0 (Pyrimidines)
      0 (Quinolones)
      0 (Receptors, Fibroblast Growth Factor)
      4340891KFS (ponatinib)
    • Publication Date:
      Date Created: 20190604 Date Completed: 20200615 Latest Revision: 20200615
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/febs.14946
    • Accession Number:
      31155838