A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      An improved red blood cell (RBC) membrane model is developed based on the bilayer coupling model (BCM) to accurately predict the complete sequence of stomatocyte-discocyte-echinocyte (SDE) transformation of a RBC. The coarse-grained (CG)-RBC membrane model is proposed to predict the minimum energy configuration of the RBC from the competition between lipid-bilayer bending resistance and cytoskeletal shear resistance under given reference constraints. In addition to the conventional membrane surface area, cell volume and bilayer-leaflet-area-difference constraints, a new constraint: total-membrane-curvature is proposed in the model to better predict RBC shapes in agreement with experimental observations. A quantitative evaluation of several cellular measurements including length, thickness and shape factor, is performed for the first time, between CG-RBC model predicted and three-dimensional (3D) confocal microscopy imaging generated RBC shapes at equivalent reference constraints. The validated CG-RBC membrane model is then employed to investigate the effect of reduced cell volume and elastic length scale on SDE transformation, to evaluate the RBC deformability during SDE transformation, and to identify the most probable RBC cytoskeletal reference state. The CG-RBC membrane model can predict the SDE shape behaviour under diverse shape-transforming scenarios, in-vitro RBC storage, microvascular circulation and flow through microfluidic devices.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      J Biomech. 2016 Jul 26;49(11):2267-2279. (PMID: 26706720)
      Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Oct;48(4):3112-3123. (PMID: 9960950)
      J Theor Biol. 1999 Feb 7;196(3):343-61. (PMID: 10049626)
      Biophys J. 1997 Mar;72(3):1220-33. (PMID: 9138568)
      Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jun;49(6):5389-5407. (PMID: 9961866)
      Int J Numer Method Biomed Eng. 2014 Jan;30(1):42-54. (PMID: 23949912)
      J Theor Biol. 1982 Jan 7;94(1):13-23. (PMID: 7078204)
      Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4266-9. (PMID: 19965026)
      Biomicrofluidics. 2014 Sep 17;8(5):051501. (PMID: 25332724)
      Biochemistry (Mosc). 2010 Aug;75(8):1025-31. (PMID: 21073424)
      J Biomed Opt. 2012 Oct;17(10):106013. (PMID: 23224012)
      Biomed Eng Online. 2017 Dec 19;16(1):140. (PMID: 29258590)
      J Biomed Opt. 2015 Nov;20(11):111218. (PMID: 26502322)
      Phys Chem Chem Phys. 2009 May 28;11(20):4051-9. (PMID: 19440635)
      PLoS Comput Biol. 2016 Oct 28;12(10):e1005173. (PMID: 27792725)
      Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):721-45. (PMID: 4268780)
      Biophys J. 2005 May;88(5):3707-19. (PMID: 15749778)
      Cardiovasc Diabetol. 2013 Jan 28;12:25. (PMID: 23356738)
      Blood. 1972 Sep;40(3):333-44. (PMID: 5056966)
      Phys Rev Lett. 2008 Sep 12;101(11):118105. (PMID: 18851338)
      Blood. 2008 Nov 15;112(10):3939-48. (PMID: 18988878)
      J Biomech Eng. 2017 Dec 1;139(12):. (PMID: 28813551)
      Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16766-9. (PMID: 12471152)
      Eur Biophys J. 1998;27(4):335-9. (PMID: 9691462)
      Cell Mol Bioeng. 2010 Sep 1;1(2-3):173-181. (PMID: 21031149)
      Chemphyschem. 2009 Nov 9;10(16):2769-76. (PMID: 19774545)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012715. (PMID: 26274210)
      Comput Methods Appl Mech Eng. 2010 Jun 1;199(29-32):. (PMID: 24353352)
      J Biomech. 2016 Jul 26;49(11):2255-2266. (PMID: 26706718)
      Phys Rev A. 1991 Jul 15;44(2):1182-1202. (PMID: 9906067)
      Biophys J. 2002 Apr;82(4):1756-72. (PMID: 11916836)
      Colloids Surf B Biointerfaces. 2004 Mar 15;34(2):123-40. (PMID: 15261082)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031904. (PMID: 20365767)
      Cardiovasc Diabetol. 2013 Apr 11;12:63. (PMID: 23578325)
      Z Naturforsch C Biosci. 1974 Sep-Oct;29C(9-10):510-5. (PMID: 4278012)
      Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9574-9579. (PMID: 30190436)
      Eur Biophys J. 2004 Feb;33(1):1-15. (PMID: 13680208)
      Bioelectrochemistry. 2004 May;62(2):107-13. (PMID: 15039011)
      Anesth Analg. 2013 May;116(5):975-981. (PMID: 23449853)
      Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457-61. (PMID: 4530994)
      Z Naturforsch C. 1973 Nov-Dec;28(11):693-703. (PMID: 4273690)
      Biophys J. 2014 Aug 5;107(3):642-653. (PMID: 25099803)
      Eur Biophys J. 1989;17(2):101-11. (PMID: 2766997)
      Biomed Opt Express. 2016 Dec 19;8(1):384-394. (PMID: 28101425)
      Biochim Biophys Acta. 2010 Sep;1798(9):1767-78. (PMID: 20538541)
      Soft Matter. 2013 Jan 7;9(1):28-37. (PMID: 23230450)
      Biophys J. 2005 Oct;89(4):2473-80. (PMID: 16055528)
      J Biomech Eng. 2017 Feb 1;139(2):. (PMID: 27814430)
      Biochim Biophys Acta. 1999 Mar 4;1417(2):246-53. (PMID: 10082800)
      Magn Reson Med. 2010 Sep;64(3):645-52. (PMID: 20806372)
      Comput Methods Biomech Biomed Engin. 2015;18(2):130-40. (PMID: 23582050)
      J Biomech Eng. 2009 Jul;131(7):074504. (PMID: 19640140)
    • Publication Date:
      Date Created: 20190420 Date Completed: 20200113 Latest Revision: 20240716
    • Publication Date:
      20240716
    • Accession Number:
      PMC6474605
    • Accession Number:
      10.1371/journal.pone.0215447
    • Accession Number:
      31002688