Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: JMIR Publications Country of Publication: Canada NLM ID: 100959882 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-8871 (Electronic) Linking ISSN: 14388871 NLM ISO Abbreviation: J Med Internet Res Subsets: MEDLINE
    • Publication Information:
      Publication: <2011- > : Toronto : JMIR Publications
      Original Publication: [Pittsburgh, PA? : s.n., 1999-
    • Subject Terms:
    • Abstract:
      Background: Previous research examining physiological changes across the menstrual cycle has considered biological responses to shifting hormones in isolation. Clinical studies, for example, have shown that women's nightly basal body temperature increases from 0.28 to 0.56 ˚C following postovulation progesterone production. Women's resting pulse rate, respiratory rate, and heart rate variability (HRV) are similarly elevated in the luteal phase, whereas skin perfusion decreases significantly following the fertile window's closing. Past research probed only 1 or 2 of these physiological features in a given study, requiring participants to come to a laboratory or hospital clinic multiple times throughout their cycle. Although initially designed for recreational purposes, wearable technology could enable more ambulatory studies of physiological changes across the menstrual cycle. Early research suggests that wearables can detect phase-based shifts in pulse rate and wrist skin temperature (WST). To date, previous work has studied these features separately, with the ability of wearables to accurately pinpoint the fertile window using multiple physiological parameters simultaneously yet unknown.
      Objective: In this study, we probed what phase-based differences a wearable bracelet could detect in users' WST, heart rate, HRV, respiratory rate, and skin perfusion. Drawing on insight from artificial intelligence and machine learning, we then sought to develop an algorithm that could identify the fertile window in real time.
      Methods: We conducted a prospective longitudinal study, recruiting 237 conception-seeking Swiss women. Participants wore the Ava bracelet (Ava AG) nightly while sleeping for up to a year or until they became pregnant. In addition to syncing the device to the corresponding smartphone app daily, women also completed an electronic diary about their activities in the past 24 hours. Finally, women took a urinary luteinizing hormone test at several points in a given cycle to determine the close of the fertile window. We assessed phase-based changes in physiological parameters using cross-classified mixed-effects models with random intercepts and random slopes. We then trained a machine learning algorithm to recognize the fertile window.
      Results: We have demonstrated that wearable technology can detect significant, concurrent phase-based shifts in WST, heart rate, and respiratory rate (all P<.001). HRV and skin perfusion similarly varied across the menstrual cycle (all P<.05), although these effects only trended toward significance following a Bonferroni correction to maintain a family-wise alpha level. Our findings were robust to daily, individual, and cycle-level covariates. Furthermore, we developed a machine learning algorithm that can detect the fertile window with 90% accuracy (95% CI 0.89 to 0.92).
      Conclusions: Our contributions highlight the impact of artificial intelligence and machine learning's integration into health care. By monitoring numerous physiological parameters simultaneously, wearable technology uniquely improves upon retrospective methods for fertility awareness and enables the first real-time predictive model of ovulation.
      (©Brianna Mae Goodale, Mohaned Shilaih, Lisa Falco, Franziska Dammeier, Györgyi Hamvas, Brigitte Leeners. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2019.)
    • References:
      Hum Reprod. 2003 Dec;18(12):2628-33. (PMID: 14645183)
      Biotechniques. 2002 Jun;32(6):1316-20. (PMID: 12074162)
      Psychosom Med. 1995 Jul-Aug;57(4):331-5. (PMID: 7480562)
      Am J Obstet Gynecol. 1980 Oct 15;138(4):383-90. (PMID: 6775535)
      BJOG. 2001 Aug;108(8):822-9. (PMID: 11510707)
      J Appl Physiol (1985). 2000 May;88(5):1643-9. (PMID: 10797125)
      Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H765-74. (PMID: 19465541)
      J Appl Physiol (1985). 1985 Dec;59(6):1902-10. (PMID: 4077797)
      J Am Board Fam Med. 2009 Mar-Apr;22(2):147-57. (PMID: 19264938)
      PLoS Med. 2016 Feb 02;13(2):e1001953. (PMID: 26836780)
      Proc SIGCHI Conf Hum Factor Comput Syst. 2017 May 2;2017:6876-6888. (PMID: 28516176)
      Ann Nutr Metab. 1995;39(3):135-42. (PMID: 7486839)
      Curr Med Res Opin. 2018 Sep;34(9):1587-1594. (PMID: 29749274)
      Clin Physiol. 2000 Nov;20(6):496-504. (PMID: 11100398)
      Sci Rep. 2017 May 2;7(1):1294. (PMID: 28465583)
      J Exp Psychol Gen. 2014 Oct;143(5):2020-45. (PMID: 25111580)
      J Midwifery Womens Health. 2005 Jan-Feb;50(1):31-8. (PMID: 15637512)
      Fertil Steril. 2004 Oct;82(4):885-92. (PMID: 15482764)
      Chin J Physiol. 2015 Apr 30;58(2):114-23. (PMID: 25858472)
      J Physiol. 2001 Feb 1;530(Pt 3):565-74. (PMID: 11158285)
      Eur J Contracept Reprod Health Care. 2016 Jun;21(3):234-41. (PMID: 27003381)
      Eur J Contracept Reprod Health Care. 2015;20(5):403-8. (PMID: 25592280)
      Clin Sci (Lond). 1996 Aug;91(2):163-8. (PMID: 8795439)
      Biom J. 2008 Jun;50(3):346-63. (PMID: 18481363)
      Hum Reprod. 2000 Dec;15(12):2478-82. (PMID: 11098014)
      Br J Sports Med. 1992 Mar;26(1):29-32. (PMID: 1600450)
      Boll Soc Ital Biol Sper. 1993 Oct;69(10):587-94. (PMID: 8198799)
      MCN Am J Matern Child Nurs. 2005 Sep-Oct;30(5):290-6; quiz 297-8. (PMID: 16132004)
      Front Psychol. 2012 Aug 28;3:322. (PMID: 22973253)
      J Med Syst. 2016 Apr;40(4):108. (PMID: 26922592)
      Fertil Steril. 1999 Nov;72(5):900-4. (PMID: 10560997)
      Clin Sci (Lond). 1990 May;78(5):527-32. (PMID: 2162282)
      Psychoneuroendocrinology. 2013 Nov;38(11):2618-27. (PMID: 23850226)
      Curr Med Res Opin. 2007 Feb;23(2):301-6. (PMID: 17288684)
      Bioeng Transl Med. 2017 May 16;2(3):238-246. (PMID: 29313033)
      J Med Internet Res. 2017 Nov 27;19(11):e391. (PMID: 29180346)
      Am Fam Physician. 2012 Nov 15;86(10):924-8. (PMID: 23157145)
      Obstet Gynecol. 2002 Dec;100(6):1333-41. (PMID: 12468181)
      Indian J Physiol Pharmacol. 2015 Apr-Jun;59(2):148-54. (PMID: 26685501)
      Int J Obes Relat Metab Disord. 1994 Aug;18(8):537-41. (PMID: 7951473)
      Psychophysiology. 2014 Oct;51(10):996-1004. (PMID: 24942292)
      J Appl Physiol (1985). 2005 Apr;98(4):1334-40. (PMID: 15579576)
      J Med Internet Res. 2018 Mar 22;20(3):e110. (PMID: 29567635)
      Arch Fam Med. 1999 Sep-Oct;8(5):391-402. (PMID: 10500511)
      Biosci Rep. 2018 Nov 30;38(6):. (PMID: 29175999)
      Fertil Steril. 1984 Feb;41(2):210-7. (PMID: 6365598)
      Hum Reprod. 1992 Jul;7(6):751-3. (PMID: 1500469)
      Fertil Steril. 2011 May;95(6):1867-78. (PMID: 21324446)
      Br J Dermatol. 1998 Sep;139(3):462-7. (PMID: 9767291)
    • Contributed Indexing:
      Keywords: algorithms; fertility/physiology; heart rate; machine learning; menstrual cycle; ovulation detection/methods; perfusion; respiratory rate; skin temperature; wearable electronic devices
    • Publication Date:
      Date Created: 20190419 Date Completed: 20200213 Latest Revision: 20200309
    • Publication Date:
      20240829
    • Accession Number:
      PMC6495289
    • Accession Number:
      10.2196/13404
    • Accession Number:
      30998226