Protein profiling of osteosarcoma tissue and soft callus unveils activation of the unfolded protein response pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: D.A. Spandidos Country of Publication: Greece NLM ID: 9306042 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1791-2423 (Electronic) Linking ISSN: 10196439 NLM ISO Abbreviation: Int J Oncol
    • Publication Information:
      Publication: <2003->: Athens, Greece : D.A. Spandidos
      Original Publication: Athens, Greece : Lychnia,
    • Subject Terms:
    • Abstract:
      Oncogenic drivers of osteosarcoma remain controversial due to the complexity of the genomic background of the disease. There are limited novel therapeutic options, and the survival rate of patients with osteosarcoma has not improved in decades. Genomic instability leads to complexity in various pathways, which is potentially revealed at the protein level. Therefore, the present study aimed to identify the mechanisms involved in the oncogenesis of osteosarcoma using proteomics and bioinformatics tools. As clinical specimens from patients are the most relevant disease‑related source, expression patterns of proteins in osteosarcoma tissues were compared with soft tissue callus from donors containing high numbers of osteoblastic cells. Two‑dimensional electrophoresis and liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) successfully identified 33 differentially expressed proteins in the osteosarcoma tissues compared with the soft tissue callus. Among these proteins, 29 proteins were significantly upregulated in osteosarcoma. A functionally grouped network of the overexpressed proteins, that was created using the ClueGo and CluePedia applications, demonstrated that the unfolded protein response (UPR) pathway was activated mainly through the activating transcription factor 6 arm in osteosarcoma. The results of proteomics analysis were confirmed by elevated expression of UPR‑related chaperone proteins, including 78 kDa glucose‑related protein (GRP78), endoplasmin, calreticulin and prelamin‑A/C, in the patient‑derived primary cells and osteosarcoma cell lines. Furthermore, the expression of GRP78, a master regulator of the UPR, was enhanced in the osteosarcoma tissues of patients that were resistant to double regimen of doxorubicin and a platinum‑based drug. The findings of the present study suggest that targeting the UPR pathway may be promising for the treatment of osteosarcoma.
    • References:
      Cell. 2001 Dec 28;107(7):881-91. (PMID: 11779464)
      Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
      Genes Dev. 2002 Feb 15;16(4):452-66. (PMID: 11850408)
      Genome Res. 2003 Nov;13(11):2498-504. (PMID: 14597658)
      Proteomics. 2004 Apr;4(4):1135-44. (PMID: 15048994)
      Cell Death Differ. 2005 Jan;12(1):10-8. (PMID: 15540114)
      Nat Rev Cancer. 2004 Dec;4(12):966-77. (PMID: 15573118)
      Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8. (PMID: 15980575)
      J Med Assoc Thai. 2006 Jun;89(6):780-7. (PMID: 16850677)
      Cancer Res. 2006 Aug 15;66(16):7849-53. (PMID: 16912156)
      J Physiol Pharmacol. 2006 Nov;57 Suppl 7:81-93. (PMID: 17228097)
      Dev Cell. 2007 Sep;13(3):365-76. (PMID: 17765680)
      Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10519-24. (PMID: 18650380)
      Semin Cell Dev Biol. 2008 Oct;19(5):459-66. (PMID: 18692584)
      Antioxid Redox Signal. 2009 Sep;11(9):2307-16. (PMID: 19309259)
      Int J Cancer. 2010 Jul 1;127(1):67-76. (PMID: 19894220)
      Cancer Genet Cytogenet. 2010 Apr 15;198(2):97-106. (PMID: 20362224)
      Cell. 2011 Mar 4;144(5):646-74. (PMID: 21376230)
      Cell Stress Chaperones. 2012 Mar;17(2):275-9. (PMID: 22038282)
      Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102. (PMID: 22251901)
      Oncogene. 2013 Feb 14;32(7):805-18. (PMID: 22508478)
      Hum Pathol. 2013 May;44(5):725-33. (PMID: 23063503)
      Curr Cancer Drug Targets. 2013 May;13(4):411-22. (PMID: 23410027)
      J Bone Miner Metab. 2013 Jul;31(4):390-8. (PMID: 23475152)
      Bioinformatics. 2013 May 15;29(10):1350-1. (PMID: 23595664)
      Pharm Res. 2015 Mar;32(3):779-92. (PMID: 24203492)
      Trends Mol Med. 2014 May;20(5):242-50. (PMID: 24456621)
      Curr Opin Pharmacol. 2014 Jun;16:15-23. (PMID: 24632219)
      Nat Rev Cancer. 2014 Apr;14(4):263-76. (PMID: 24658275)
      Cell Rep. 2014 Apr 10;7(1):104-12. (PMID: 24703847)
      Oncol Rep. 2014 Jun;31(6):2525-34. (PMID: 24756776)
      Nat Rev Cancer. 2014 Sep;14(9):581-97. (PMID: 25145482)
      Nat Rev Rheumatol. 2015 Jan;11(1):45-54. (PMID: 25266456)
      Ann Oncol. 2015 Feb;26(2):407-14. (PMID: 25421877)
      Mol Cell Biol. 1989 May;9(5):2153-62. (PMID: 2546060)
      Cancer Biomark. 2015;15(2):197-203. (PMID: 25519021)
      Haematologica. 2015 Mar;100(3):377-84. (PMID: 25637055)
      Semin Cancer Biol. 2015 Aug;33:40-7. (PMID: 25931388)
      Am J Orthop (Belle Mead NJ). 2015 Dec;44(12):547-53. (PMID: 26665241)
      Mol Cancer Ther. 2016 May;15(5):1043-52. (PMID: 26939701)
      Onco Targets Ther. 2016 Jul 04;9:4005-13. (PMID: 27445491)
      Oncotarget. 2016 Aug 30;7(35):56371-56382. (PMID: 27486760)
      Int J Oncol. 2016 Sep;49(3):903-12. (PMID: 27573585)
      Sci Rep. 2016 Oct 31;6:36330. (PMID: 27796345)
      Sci Signal. 2017 Mar 14;10(470):null. (PMID: 28292956)
      Cancer Lett. 2017 Dec 1;410:112-123. (PMID: 28947141)
      Mod Pathol. 2018 Feb;31(2):264-274. (PMID: 28984297)
      J Mol Med (Berl). 1995 Nov;73(11):571-5. (PMID: 8751141)
    • Publication Date:
      Date Created: 20190301 Date Completed: 20190813 Latest Revision: 20211204
    • Publication Date:
      20231215
    • Accession Number:
      PMC6438438
    • Accession Number:
      10.3892/ijo.2019.4737
    • Accession Number:
      30816440