Simulation of facial growth based on longitudinal data: Age progression and age regression between 7 and 17 years of age using 3D surface data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Modelling of the development of facial morphology during childhood and adolescence is highly useful in forensic and biomedical practice. However, most studies in this area fail to capture the essence of the face as a three-dimensional structure. The main aims of our present study were (1) to construct ageing trajectories for the female and male face between 7 and 17 years of age and (2) to propose a three-dimensional age progression (age -regression) system focused on real growth-related facial changes. Our approach was based on an assessment of a total of 522 three-dimensional (3D) facial scans of Czech children (39 boys, 48 girls) that were longitudinally studied between the ages of 7 to 12 and 12 to 17 years. Facial surface scans were obtained using a Vectra-3D scanner and evaluated using geometric morphometric methods (CPD-DCA, PCA, Hotelling's T2 tests). We observed very similar growth rates between 7 and 10 years in both sexes, followed by an increase in growth velocity in both sexes, with maxima between 11 and 12 years in girls and 11 to 13 years in boys, which are connected with the different timing of the onset of puberty. Based on these partly different ageing trajectories for girls and boys, we simulated the effects of age progression (age regression) on facial scans. In girls, the mean error was 1.81 mm at 12 years and 1.7 mm at 17 years. In boys, the prediction system was slightly less successful: 2.0 mm at 12 years and 1.94 mm at 17 years. The areas with the greatest deviations between predicted and real facial morphology were not important for facial recognition. Changes of body mass index percentiles in children throughout the observation period had no significant influence on the accuracy of the age progression models for both sexes.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Sci Justice. 2017 Mar;57(2):136-143. (PMID: 28284439)
      Forensic Sci Int. 2018 May;286:61-69. (PMID: 29567544)
      Eur J Clin Nutr. 2005 Mar;59(3):419-25. (PMID: 15674315)
      IEEE Trans Pattern Anal Mach Intell. 2010 Nov;32(11):1955-76. (PMID: 20847387)
      Biomed Res Int. 2015;2015:823841. (PMID: 26380296)
      J Forensic Sci. 2010 Jul;55(4):1025-31. (PMID: 20487167)
      Econ Hum Biol. 2007 Dec;5(3):409-25. (PMID: 17766203)
      J Craniofac Surg. 2013 Jan;24(1):237-41. (PMID: 23348292)
      IEEE Trans Med Imaging. 2003 Jun;22(6):747-53. (PMID: 12872950)
      Sci Rep. 2018 Mar 19;8(1):4771. (PMID: 29556038)
      Clin Anat. 2003 Sep;16(5):420-33. (PMID: 12903065)
      IEEE Trans Image Process. 2016 Jun;25(6):2493-507. (PMID: 27093721)
      Forensic Sci Int. 2013 Dec 10;233(1-3):75-83. (PMID: 24314504)
      Sci Justice. 2017 Jul;57(4):250-256. (PMID: 28606330)
      Neuroimage. 2010 Aug 15;52(2):720-5. (PMID: 20406694)
      IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):905-917. (PMID: 28534768)
      Eur J Orthod. 2013 Apr;35(2):143-51. (PMID: 21300725)
      Am J Hum Biol. 2013 Nov-Dec;25(6):847-50. (PMID: 24105760)
      PLoS One. 2016 Apr 14;11(4):e0153083. (PMID: 27078636)
      Plast Reconstr Surg. 1999 Mar;103(3):768-78. (PMID: 10077065)
      Q J Exp Psychol (Hove). 2015;68(2):249-60. (PMID: 25203612)
      Int J Legal Med. 2000;113(3):129-36. (PMID: 10876982)
      Int J Obes (Lond). 2005 Jan;29(1):1-8. (PMID: 15278104)
      Homo. 2012 Apr;63(2):81-93. (PMID: 22425585)
      Stat Med. 1998 Feb 28;17(4):407-29. (PMID: 9496720)
      Int J Legal Med. 2012 Jan;126(1):139-44. (PMID: 21431334)
      Forensic Sci Int. 2009 Jan 10;183(1-3):e21-4. (PMID: 19019589)
      Angle Orthod. 2014 Jan;84(1):48-55. (PMID: 23834271)
      Forensic Sci Int. 2009 Dec 15;193(1-3):1-13. (PMID: 19879075)
      PLoS One. 2017 Jul 7;12(7):e0180330. (PMID: 28686631)
      Forensic Sci Int. 2015 Dec;257:519.e1-519.e9. (PMID: 26548377)
      J Orthod. 2000 Mar;27(1):31-8. (PMID: 10790442)
      Forensic Sci Med Pathol. 2009;5(3):174-81. (PMID: 19655278)
      Forensic Sci Int. 2015 Mar;248:33-40. (PMID: 25576677)
      Int J Legal Med. 2014 Sep;128(5):803-8. (PMID: 23728308)
      Perception. 2009;38(11):1700-11. (PMID: 20120267)
      Am J Orthod Dentofacial Orthop. 2008 Dec;134(6):751-60. (PMID: 19061801)
      Am J Phys Anthropol. 2015 Sep;158(1):116-31. (PMID: 26146938)
      Eur J Orthod. 2017 Feb;39(1):52-60. (PMID: 26888830)
      Angle Orthod. 2004 Feb;74(1):37-42. (PMID: 15038489)
      Am J Phys Anthropol. 2006 Nov;131(3):432-43. (PMID: 16596605)
    • Publication Date:
      Date Created: 20190223 Date Completed: 20191121 Latest Revision: 20200309
    • Publication Date:
      20231215
    • Accession Number:
      PMC6386244
    • Accession Number:
      10.1371/journal.pone.0212618
    • Accession Number:
      30794623