Variance in biomass-allocation fractions is explained by distribution in European trees.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley on behalf of New Phytologist Trust
      Original Publication: London, New York [etc.] Academic Press.
    • Subject Terms:
    • Abstract:
      Intraspecific variability in ecological traits confers the ability of a species to adapt to an ever-changing environment. Fractions of biomass allocation in plants (BAFs) represent both ecological traits and direct expressions of investment strategies and so have important implications on plant fitness, particularly under current global change. We combined data on BAFs of trees in > 10 000 forest plots with their distributions in Europe. We aimed to test whether plant species with wider distributions have more or less variable intraspecific variance of the BAFs foliage-woody biomass and shoot-root ratios than species with limited distribution. Irrespective of corrections for tree age and phylogenetic relatedness, the standard deviation in BAFs was up to three times higher in species with the most extensive distributions than in those with the least extensive distribution due to a higher genetic diversity. Variance in BAFs also increased with latitude. We show that a combination of 36% tree genetic diversity and 64% environmental variability explains variance in BAFs and implies that changes in genetic diversity occur quickly. Genetic diversity should thus play a key role in regulating species responses to future climate change. Loss of habitat, even if transient, could induce a loss of genetic diversity and hinder species survival.
      (© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.)
    • Grant Information:
      ERC-SyG-2013-610028 IMBALANCE-P International European Research Council
    • Contributed Indexing:
      Keywords: allometry; effective population size; extinction; genetic diversity; plant allometry; plant morphology; woody plants
    • Publication Date:
      Date Created: 20190114 Date Completed: 20200227 Latest Revision: 20200930
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/nph.15686
    • Accession Number:
      30636348