Reboxetine and hyoscine butylbromide improve upper airway function during nonrapid eye movement and suppress rapid eye movement sleep in healthy individuals.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: United States NLM ID: 7809084 Publication Model: Print Cited Medium: Internet ISSN: 1550-9109 (Electronic) Linking ISSN: 01618105 NLM ISO Abbreviation: Sleep Subsets: MEDLINE
    • Publication Information:
      Publication: 2017- : New York : Oxford University Press
      Original Publication: New York, Raven Press.
    • Subject Terms:
    • Abstract:
      Study Objectives: Recent findings indicate that noradrenergic and antimuscarinic processes are crucial for sleep-related reductions in pharyngeal muscle activity. However, there are few human studies. Accordingly, this study aimed to determine if a combined noradrenergic and antimuscarinic intervention increases pharyngeal dilator muscle activity and improves airway function in sleeping humans.
      Methods: Genioglossus (GG) and tensor palatini electromyography (EMG), pharyngeal pressure, upper airway resistance, and breathing parameters were acquired in 10 healthy adults (5 female) during two overnight sleep studies after 4 mg of reboxetine (REB) plus 20 mg of hyoscine butylbromide (HBB) or placebo using a double-blind, placebo-controlled, randomized, cross-over design.
      Results: Compared with placebo, peak and tonic GG EMG were lower (Mean ± SD: 83 ± 73 vs. 130 ± 75, p = 0.021 and 102 ± 102 vs. 147 ± 123 % wakefulness, p = 0.021, respectively) but the sleep-related reduction in tensor palatini was less (Median [25th, 75th centiles]: 53[45, 62] vs. 34[28, 38] % wakefulness, p = 0.008) with the drug combination during nonrapid eye movement (non-REM) sleep. These changes were accompanied by improved upper airway function including reduced pharyngeal pressure swings, airway resistance, respiratory load compensation, and increased breathing frequency during N2. REB and HBB significantly reduced rapid eye movement sleep compared with placebo (0.6 ± 1.1 vs. 14.5 ± 6.8 % total sleep time, p < 0.001).
      Conclusions: Contrary to our hypothesis, GG muscle activity (% wakefulness) during non-REM sleep was lower with REB and HBB. However, sleep-related reductions in tensor palatini activity were less and upper airway function improved. These findings provide mechanistic insight into the role of noradrenergic and antimuscarinic processes on upper airway function in humans and have therapeutic potential for obstructive sleep apnea.
      Clinical Trial Registration: Australian New Zealand Clinical Trials Registry, https://www.anzctr.org.au, trial ID: ACTRN12616000469415.
      (© Sleep Research Society 2018. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail [email protected].)
    • References:
      J Appl Physiol (1985). 2014 Feb 1;116(3):302-13. (PMID: 23990246)
      J Affect Disord. 2015 Jul 15;180:179-84. (PMID: 25911132)
      Eur Respir J. 2007 Aug;30(2):345-53. (PMID: 17459896)
      Sleep Med Rev. 2012 Apr;16(2):187-97. (PMID: 22296742)
      J Physiol. 2005 Apr 15;564(Pt 2):549-62. (PMID: 15695240)
      Sleep. 2011 Nov 01;34(11):1479-86. (PMID: 22043118)
      N Engl J Med. 2014 Jan 9;370(2):139-49. (PMID: 24401051)
      Neuropharmacology. 2004 May;46(6):815-23. (PMID: 15033341)
      Respir Physiol Neurobiol. 2013 Sep 15;188(3):362-9. (PMID: 23797183)
      Nat Neurosci. 2009 Apr;12(4):396-7. (PMID: 18836440)
      J Physiol. 2003 Aug 1;550(Pt 3):899-910. (PMID: 12807995)
      Neuropharmacology. 2012 Jun;62(7):2354-62. (PMID: 22369787)
      Respirology. 2017 Jul;22(5):861-873. (PMID: 28544082)
      Sleep. 2012 May 01;35(5):699-707. (PMID: 22547896)
      J Appl Physiol (1985). 1998 Sep;85(3):908-20. (PMID: 9729564)
      Respir Physiol. 1991 Feb;83(2):189-200. (PMID: 2068416)
      Biol Psychiatry. 1991 Jul 15;30(2):157-69. (PMID: 1655072)
      Proc Am Thorac Soc. 2008 Feb 15;5(2):173-8. (PMID: 18250209)
      J Appl Physiol (1985). 1991 Jun;70(6):2574-81. (PMID: 1885452)
      Sleep. 2008 Apr;31(4):525-33. (PMID: 18457240)
      J Clin Sleep Med. 2012 Oct 15;8(5):597-619. (PMID: 23066376)
      Indian J Physiol Pharmacol. 1998 Jul;42(3):395-400. (PMID: 9741655)
      J Appl Physiol (1985). 2018 Feb 1;124(2):421-429. (PMID: 29191983)
      Am J Respir Crit Care Med. 2013 Oct 15;188(8):996-1004. (PMID: 23721582)
      J Clin Sleep Med. 2015 Sep 15;11(9):1029-38. (PMID: 25902824)
      Am J Respir Crit Care Med. 2006 Dec 1;174(11):1264-73. (PMID: 16931636)
      Chest. 2018 Mar;153(3):744-755. (PMID: 28629917)
      CNS Drug Rev. 2004 Spring;10(1):23-44. (PMID: 14978512)
      Am J Respir Crit Care Med. 2011 May 1;183(9):1280. (PMID: 21531956)
      PLoS One. 2017 Jun 13;12(6):e0179030. (PMID: 28609480)
      Biol Psychiatry. 2000 May 1;47(9):818-29. (PMID: 10812041)
      Am J Respir Crit Care Med. 2016 Oct 1;194(7):878-885. (PMID: 26967681)
      Am J Respir Crit Care Med. 2017 Jun 15;195(12):1677-1678. (PMID: 28186828)
      Chron Respir Dis. 2013 Feb;10(1):29-33. (PMID: 23355403)
      J Physiol. 2001 Apr 15;532(Pt 2):467-81. (PMID: 11306665)
      J Sleep Res. 2011 Dec;20(4):544-51. (PMID: 21352389)
      Clin Pharmacol Ther. 1969 Jul-Aug;10(4):522-9. (PMID: 4307415)
      Am J Respir Crit Care Med. 2013 Feb 1;187(3):311-9. (PMID: 23220910)
      Science. 1994 Jul 29;265(5172):679-82. (PMID: 8036518)
      Sleep Breath. 2012 Jun;16(2):563-9. (PMID: 21667216)
      J Appl Physiol (1985). 2015 Jun 15;118(12):1516-24. (PMID: 25814639)
      Pharmacol Biochem Behav. 2007 Mar;86(3):468-76. (PMID: 17303232)
      Am J Respir Crit Care Med. 2018 Mar 1;197(5):653-660. (PMID: 29112823)
      Sleep Breath. 2012 Jun;16(2):519-26. (PMID: 21614575)
      Drugs. 2007;67(9):1343-57. (PMID: 17547475)
      J Appl Physiol (1985). 2015 May 15;118(10):1221-8. (PMID: 25749447)
      Lancet. 2014 Feb 22;383(9918):736-47. (PMID: 23910433)
      Am J Respir Crit Care Med. 2005 Nov 15;172(10):1322-30. (PMID: 16100007)
      Eur Respir J. 2016 Nov;48(5):1340-1350. (PMID: 27799387)
      Learn Mem. 2004 Nov-Dec;11(6):714-9. (PMID: 15576889)
      Proc Am Thorac Soc. 2008 Feb 15;5(2):200-6. (PMID: 18250213)
      Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):1058-62. (PMID: 10988130)
      Am J Respir Crit Care Med. 2017 Jun 15;195(12):1678-1679. (PMID: 28186830)
    • Grant Information:
      P01 HL095491 United States HL NHLBI NIH HHS
    • Contributed Indexing:
      Keywords: genioglossus; muscarinic antagonists; norepinephrine reuptake inhibitor; obstructive sleep apnea; sleep-disordered breathing; tensor palatini; upper airway physiology
    • Molecular Sequence:
      ANZCTR ACTRN12616000469415
    • Accession Number:
      0 (Parasympatholytics)
      2Z3E1OF81V (Butylscopolammonium Bromide)
      947S0YZ36I (Reboxetine)
      DL48G20X8X (Scopolamine)
    • Publication Date:
      Date Created: 20181228 Date Completed: 20200406 Latest Revision: 20210923
    • Publication Date:
      20231215
    • Accession Number:
      PMC8453808
    • Accession Number:
      10.1093/sleep/zsy261
    • Accession Number:
      30590857