Inhibition of checkpoint kinase 1 following gemcitabine-mediated S phase arrest results in CDC7- and CDK2-dependent replication catastrophe.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Warren NJH;Warren NJH; Eastman A; Eastman A
  • Source:
    The Journal of biological chemistry [J Biol Chem] 2019 Feb 08; Vol. 294 (6), pp. 1763-1778. Date of Electronic Publication: 2018 Dec 20.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
      Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
    • Subject Terms:
    • Abstract:
      Combining DNA-damaging drugs with DNA checkpoint inhibitors is an emerging strategy to manage cancer. Checkpoint kinase 1 inhibitors (CHK1is) sensitize most cancer cell lines to DNA-damaging drugs and also elicit single-agent cytotoxicity in 15% of cell lines. Consequently, combination therapy may be effective in a broader patient population. Here, we characterized the molecular mechanism of sensitization to gemcitabine by the CHK1i MK8776. Brief gemcitabine incubation irreversibly inhibited ribonucleotide reductase, depleting dNTPs, resulting in durable S phase arrest. Addition of CHK1i 18 h after gemcitabine elicited cell division cycle 7 (CDC7)- and cyclin-dependent kinase 2 (CDK2)-dependent reactivation of the replicative helicase, but did not reinitiate DNA synthesis due to continued lack of dNTPs. Helicase reactivation generated extensive single-strand (ss)DNA that exceeded the protective capacity of the ssDNA-binding protein, replication protein A. The subsequent cleavage of unprotected ssDNA has been termed replication catastrophe. This mechanism did not occur with concurrent CHK1i plus gemcitabine treatment, providing support for delayed administration of CHK1i in patients. Alternative mechanisms of CHK1i-mediated sensitization to gemcitabine have been proposed, but their role was ruled out; these mechanisms include premature mitosis, inhibition of homologous recombination, and activation of double-strand break repair nuclease (MRE11). In contrast, single-agent activity of CHK1i was MRE11-dependent and was prevented by lower concentrations of a CDK2 inhibitor. Hence, both pathways require CDK2 but appear to depend on different CDK2 substrates. We conclude that a small-molecule inhibitor of CHK1 can elicit at least two distinct, context-dependent mechanisms of cytotoxicity in cancer cells.
      (© 2019 Warren and Eastman.)
    • Comments:
      Comment in: J Biol Chem. 2019 Feb 8;294(6):2191. (PMID: 30737318)
    • References:
      Mol Cell. 2017 Jun 15;66(6):735-749. (PMID: 28622519)
      PLoS One. 2012;7(8):e44021. (PMID: 22937147)
      Cancer Discov. 2012 Jun;2(6):524-39. (PMID: 22628408)
      J Biol Chem. 1997 Nov 14;272(46):29207-11. (PMID: 9360999)
      Cell. 2013 Nov 21;155(5):1088-103. (PMID: 24267891)
      Mol Cell. 2015 Sep 17;59(6):998-1010. (PMID: 26365379)
      Br J Clin Pharmacol. 2013 Sep;76(3):358-69. (PMID: 23593991)
      Oncogene. 2008 Jun 26;27(28):3977-85. (PMID: 18317453)
      Mol Cancer Ther. 2015 Sep;14(9):2004-13. (PMID: 26141948)
      Nat Chem Biol. 2009 Mar;5(3):129-30; author reply 130. (PMID: 19219009)
      Cell Rep. 2016 Jan 12;14(2):298-309. (PMID: 26748709)
      Mol Cell. 2003 Aug;12(2):381-92. (PMID: 14536078)
      Cell. 2016 Dec 15;167(7):1750-1761.e16. (PMID: 27984725)
      Oncogene. 2004 Apr 12;23(16):2825-37. (PMID: 15077146)
      Redox Biol. 2014 Jan 09;2:457-65. (PMID: 24624335)
      Mol Cell. 2009 Jul 31;35(2):206-16. (PMID: 19647517)
      J Cell Biol. 2010 Dec 27;191(7):1285-97. (PMID: 21173116)
      Cancer Res. 2015 Sep 1;75(17):3583-95. (PMID: 26141863)
      Mol Pharmacol. 1990 Oct;38(4):567-72. (PMID: 2233693)
      J Biol Chem. 2012 Jan 20;287(4):2531-43. (PMID: 22123827)
      PLoS One. 2011;6(8):e23517. (PMID: 21858151)
      Oncotarget. 2017 Jun 28;8(40):67754-67768. (PMID: 28978069)
      Nat Commun. 2013;4:1423. (PMID: 23361013)
      Stem Cells. 2011 Apr;29(4):651-9. (PMID: 21319273)
      Cancer Cell. 2004 Dec;6(6):565-76. (PMID: 15607961)
      Nucleic Acids Res. 2012 Nov;40(21):10780-94. (PMID: 22977173)
      Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12968-73. (PMID: 19525400)
      Cell Rep. 2015 Mar 17;10(10):1749-1757. (PMID: 25772361)
      Nature. 2010 Dec 23;468(7327):1074-9. (PMID: 21179163)
      Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10078-83. (PMID: 15210935)
      Cell Cycle. 2016 May 2;15(9):1184-8. (PMID: 26986210)
      Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7. (PMID: 20842177)
      Mol Biotechnol. 2004 Mar;26(3):249-61. (PMID: 15004294)
      Cell Cycle. 2016;15(7):974-85. (PMID: 26919204)
      J Biol Chem. 2003 Dec 26;278(52):52052-60. (PMID: 14551212)
      Clin Cancer Res. 1996 May;2(5):791-7. (PMID: 9816232)
      Mol Cell Biol. 2000 Nov;20(22):8602-12. (PMID: 11046155)
      Science. 1986 Jun 6;232(4755):1264-6. (PMID: 2422760)
      J Cell Biol. 2015 Mar 2;208(5):545-62. (PMID: 25733713)
      Oncotarget. 2017 Feb 14;8(7):10966-10979. (PMID: 28030798)
      Cell. 1999 Dec 10;99(6):577-87. (PMID: 10612394)
      Mol Cell. 2015 Sep 17;59(6):1011-24. (PMID: 26365377)
      BMC Cancer. 2013 Dec 21;13:604. (PMID: 24359526)
      Oncogene. 2005 Apr 18;24(17):2827-43. (PMID: 15838518)
      Cancer Res. 2018 Jun 1;78(11):3054-3066. (PMID: 29735549)
      Oncotarget. 2016 Jan 12;7(2):1380-94. (PMID: 26595527)
      Anal Biochem. 1992 Nov 15;207(1):186-92. (PMID: 1489093)
      J Biol Chem. 2006 Apr 14;281(15):10281-90. (PMID: 16446360)
      Electrophoresis. 2009 Mar;30(5):848-51. (PMID: 19197901)
      Genes Cells. 2006 Sep;11(9):993-1007. (PMID: 16923121)
      Mol Cell. 1999 Dec;4(6):1093-9. (PMID: 10635334)
      Cancer Discov. 2017 Jan;7(1):20-37. (PMID: 28003236)
      Mol Cell Biol. 2005 May;25(9):3553-62. (PMID: 15831461)
      Nat Cell Biol. 2014 Jan;16(1):2-9. (PMID: 24366029)
      Clin Cancer Res. 2012 Dec 15;18(24):6723-31. (PMID: 23092873)
      Mol Cell. 2010 Feb 26;37(4):492-502. (PMID: 20188668)
      Cell Res. 2015 Jan;25(1):9-23. (PMID: 25403473)
      Biochemistry. 2000 Aug 8;39(31):9494-501. (PMID: 10924145)
      Mol Cancer Ther. 2012 Feb;11(2):427-38. (PMID: 22203733)
      Genome Biol. 2006;7(10):R100. (PMID: 17076895)
      Mol Cell. 2015 Apr 16;58(2):323-38. (PMID: 25843623)
    • Grant Information:
      P30 CA023108 United States CA NCI NIH HHS; R01 CA117874 United States CA NCI NIH HHS; S10 OD021616 United States OD NIH HHS
    • Contributed Indexing:
      Keywords: Chk1; DNA-damage response; cancer; cell cycle; cell division cycle 7-related protein kinase (Cdc7); cyclin-dependent kinase (CDK); gemcitabine; replication catastrophe; single-strand binding protein RPA
    • Accession Number:
      0 (Cell Cycle Proteins)
      0 (DNA, Single-Stranded)
      0 (MK-8776)
      0 (Pyrazoles)
      0 (Pyrimidines)
      0W860991D6 (Deoxycytidine)
      EC 2.7.1.- (CDC7 protein, human)
      EC 2.7.11.1 (CHEK1 protein, human)
      EC 2.7.11.1 (Checkpoint Kinase 1)
      EC 2.7.11.1 (Protein Serine-Threonine Kinases)
      EC 2.7.11.22 (CDK2 protein, human)
      EC 2.7.11.22 (Cyclin-Dependent Kinase 2)
      0 (Gemcitabine)
    • Publication Date:
      Date Created: 20181222 Date Completed: 20190625 Latest Revision: 20221207
    • Publication Date:
      20231215
    • Accession Number:
      PMC6369309
    • Accession Number:
      10.1074/jbc.RA118.005231
    • Accession Number:
      30573684