EEG electrode digitization with commercial virtual reality hardware.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Cline CC;Cline CC; Coogan C; Coogan C; He B; He B; He B
  • Source:
    PloS one [PLoS One] 2018 Nov 21; Vol. 13 (11), pp. e0207516. Date of Electronic Publication: 2018 Nov 21 (Print Publication: 2018).
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Accurate spatial co-registration of EEG electrode positions with individual head models is an important component for EEG source localization and imaging. Due to variations in head shape between individuals, this requires measurements of electrode locations in each individual. Existing hardware for digitization can be accurate, but also relatively expensive. With the goal of making digitization more accessible for a range of research laboratories, we have developed an open-source software tool that can make use of less expensive consumer virtual reality hardware for EEG electrode digitization. Here we describe our developed VRDigitizer system and compare it to existing digitization solutions. Experimental evaluations were performed in a phantom head model and in 12 human subjects. In our comparison experiments, VRDigitizer was able to measure electrode positions with a mean error of 3.74 mm, compared to 1.73 mm and 2.98 mm for the commercial systems tested.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Neuroimage. 2017 May 15;152:590-601. (PMID: 28300640)
      Clin Neurophysiol. 2005 May;116(5):1130-40. (PMID: 15826854)
      Ann Biomed Eng. 2011 Mar;39(3):983-95. (PMID: 21140291)
      Neurosci Lett. 2013 Apr 29;541:73-6. (PMID: 23485737)
      Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):554-8. (PMID: 9741756)
      IEEE Trans Biomed Eng. 1987 Jun;34(6):406-14. (PMID: 3610187)
      Electroencephalogr Clin Neurophysiol. 1991 Jan;78(1):85-7. (PMID: 1701720)
      Int J Psychophysiol. 1994 Oct;18(1):49-65. (PMID: 7876038)
      Front Neurosci. 2015 Apr 20;9:130. (PMID: 25941468)
      Front Neurosci. 2014 Mar 11;8:42. (PMID: 24653671)
      Comput Intell Neurosci. 2011;2011:879716. (PMID: 21584256)
      IEEE Trans Biomed Eng. 2011 Jul;58(7):1918-31. (PMID: 21478071)
      Neurophysiol Clin. 2007 Apr-May;37(2):97-102. (PMID: 17540292)
      Electroencephalogr Clin Neurophysiol. 1993 Jan;86(1):1-6. (PMID: 7678386)
      Front Neurosci. 2017 May 16;11:264. (PMID: 28559791)
      Neuroimage. 2016 Nov 15;142:27-42. (PMID: 27241482)
      Clin Neurophysiol. 2004 Oct;115(10):2195-222. (PMID: 15351361)
      IEEE Trans Biomed Eng. 2016 Jan;63(1):4-14. (PMID: 26276986)
    • Publication Date:
      Date Created: 20181122 Date Completed: 20190417 Latest Revision: 20190417
    • Publication Date:
      20231215
    • Accession Number:
      PMC6248988
    • Accession Number:
      10.1371/journal.pone.0207516
    • Accession Number:
      30462691