Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9814575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7209 (Electronic) Linking ISSN: 09696970 NLM ISO Abbreviation: Angiogenesis Subsets: MEDLINE
    • Publication Information:
      Publication: Dec. 2004- : Berlin : Springer
      Original Publication: London ; Philadelphia : Rapid Science Publishers,
    • Subject Terms:
    • Abstract:
      Angiogenic sprouting, the growth of new blood vessels from pre-existing vessels, is orchestrated by cues from within the cellular microenvironment, such as biochemical gradients and perfusion. However, many of these cues are missing in current in vitro models of angiogenic sprouting. We here describe an in vitro platform that integrates both perfusion and the generation of stable biomolecular gradients and demonstrate its potential to study more physiologically relevant angiogenic sprouting and microvascular stabilization. The platform consists of an array of 40 individually addressable microfluidic units that enable the culture of perfused microvessels against a three-dimensional collagen-1 matrix. Upon the introduction of a gradient of pro-angiogenic factors, the endothelial cells differentiated into tip cells that invaded the matrix. Continuous exposure resulted in continuous migration and the formation of lumen by stalk cells. A combination of vascular endothelial growth factor-165 (VEGF-165), phorbol 12-myristate 13-acetate (PMA), and sphingosine-1-phosphate (S1P) was the most optimal cocktail to trigger robust, directional angiogenesis with S1P being crucial for guidance and repetitive sprout formation. Prolonged exposure forces the angiogenic sprouts to anastomose through the collagen to the other channel. This resulted in remodeling of the angiogenic sprouts within the collagen: angiogenic sprouts that anastomosed with the other perfusion channel remained stable, while those who did not retracted and degraded. Furthermore, perfusion with 150 kDa FITC-Dextran revealed that while the angiogenic sprouts were initially leaky, once they fully crossed the collagen lane they became leak tight. This demonstrates that once anastomosis occurred, the sprouts matured and suggests that perfusion can act as an important survival and stabilization factor for the angiogenic microvessels. The robustness of this platform in combination with the possibility to include a more physiological relevant three-dimensional microenvironment makes our platform uniquely suited to study angiogenesis in vitro.
    • References:
      Nat Rev Drug Discov. 2013 Sep;12(9):688-702. (PMID: 23954895)
      Lab Chip. 2008 Sep;8(9):1507-15. (PMID: 18818806)
      World J Biol Chem. 2010 Oct 26;1(10):291-7. (PMID: 21537462)
      Nature. 2005 Dec 15;438(7070):932-6. (PMID: 16355210)
      BMC Bioinformatics. 2006 Aug 10;7:373. (PMID: 16901352)
      Cardiovasc Res. 2008 May 1;78(2):301-7. (PMID: 18187460)
      Cell Adh Migr. 2014;8(5):517-24. (PMID: 25482628)
      Microvasc Res. 2006 May;71(3):185-96. (PMID: 16600313)
      Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15342-7. (PMID: 21876168)
      Endocrinology. 2010 Jul;151(7):2994-3005. (PMID: 20501673)
      Development. 2011 Nov;138(21):4569-83. (PMID: 21965610)
      J R Soc Interface. 2011 Oct 7;8(63):1379-85. (PMID: 21733876)
      Lab Chip. 2015 Jan 7;15(1):301-10. (PMID: 25370780)
      PLoS Comput Biol. 2013;9(3):e1002983. (PMID: 23555218)
      Int J Exp Pathol. 2009 Jun;90(3):195-221. (PMID: 19563606)
      Lab Chip. 2015 Jan 7;15(1):141-50. (PMID: 25317977)
      Integr Biol (Camb). 2014 May;6(5):555-63. (PMID: 24676392)
      Cell. 2011 Sep 16;146(6):873-87. (PMID: 21925313)
      Development. 2016 Jul 1;143(13):2249-60. (PMID: 27381223)
      Regen Med. 2017 Apr;12(3):285-302. (PMID: 28318376)
      J Cell Biol. 2003 Jun 23;161(6):1163-77. (PMID: 12810700)
      Lab Chip. 2013 Sep 21;13(18):3548-54. (PMID: 23887749)
      J Biomed Mater Res A. 2014 Apr;102(4):1164-72. (PMID: 23630058)
      Dev Cell. 2015 Jul 6;34(1):5-17. (PMID: 26151903)
      Development. 2012 Oct;139(20):3859-69. (PMID: 22951644)
      Bioinformatics. 2017 Aug 1;33(15):2424-2426. (PMID: 28369169)
      PLoS One. 2015 Jul 23;10(7):e0133880. (PMID: 26204526)
      Lab Chip. 2012 Apr 7;12(7):1224-37. (PMID: 22318426)
      Blood. 2008 Aug 15;112(4):1129-38. (PMID: 18541717)
      Sci Rep. 2017 Dec 22;7(1):18071. (PMID: 29273771)
      Curr Opin Biotechnol. 2015 Dec;35:118-26. (PMID: 26094109)
      Methods Mol Biol. 2013;1066:17-28. (PMID: 23955730)
      Biomaterials. 2016 Feb;78:115-28. (PMID: 26691234)
      Nat Rev Mol Cell Biol. 2003 May;4(5):397-407. (PMID: 12728273)
      Nat Protoc. 2007;2(2):329-33. (PMID: 17406593)
      Lab Chip. 2013 Aug 21;13(16):3246-52. (PMID: 23787488)
      Angiogenesis. 2006;9(2):39-51. (PMID: 16607569)
      Curr Opin Cell Biol. 2011 Dec;23(6):676-85. (PMID: 22051380)
      Dev Cell. 2012 Sep 11;23(3):600-10. (PMID: 22975328)
      Microvasc Res. 2014 Jan;91:90-8. (PMID: 24333621)
      World J Biol Chem. 2010 Oct 26;1(10):298-306. (PMID: 21537463)
      Dev Biol. 2012 Dec 15;372(2):157-65. (PMID: 23031691)
      Microvasc Res. 2003 Sep;66(2):102-12. (PMID: 12935768)
      Nat Protoc. 2009;4(12):1888-98. (PMID: 20010936)
      Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7. (PMID: 23569284)
      Organogenesis. 2008 Oct;4(4):241-6. (PMID: 19337404)
      Nat Rev Cancer. 2010 Aug;10(8):587-93. (PMID: 20631803)
      Nature. 2014 Mar 13;507(7491):181-9. (PMID: 24622198)
      Physiology (Bethesda). 2014 Nov;29(6):446-55. (PMID: 25362638)
      Dev Cell. 2009 Feb;16(2):196-208. (PMID: 19217422)
      PLoS One. 2012;7(12):e50582. (PMID: 23226527)
      Cancer Res. 2006 Jan 1;66(1):221-31. (PMID: 16397235)
      Cold Spring Harb Perspect Med. 2013 Jan 01;3(1):a006569. (PMID: 23085847)
      Lab Chip. 2013 Apr 21;13(8):1489-500. (PMID: 23440068)
      Nature. 2000 Sep 14;407(6801):249-57. (PMID: 11001068)
      J Biomech. 2016 May 24;49(8):1340-1346. (PMID: 26556715)
    • Grant Information:
      CVON RECONNECT International Hartstichting; 114022501 International ZonMw; FES0908 International Virgo
    • Contributed Indexing:
      Keywords: 3D cell culture; Angiogenic sprouting; In vitro; Microfluidics; Vascular stabilization
    • Accession Number:
      0 (Lysophospholipids)
      0 (VEGFA protein, human)
      0 (Vascular Endothelial Growth Factor A)
      26993-30-6 (sphingosine 1-phosphate)
      NGZ37HRE42 (Sphingosine)
      NI40JAQ945 (Tetradecanoylphorbol Acetate)
    • Publication Date:
      Date Created: 20180902 Date Completed: 20200326 Latest Revision: 20200326
    • Publication Date:
      20240829
    • Accession Number:
      PMC6510881
    • Accession Number:
      10.1007/s10456-018-9647-0
    • Accession Number:
      30171498