A model for studying the energetics of sustained high frequency firing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200-600 Hz) we calculate frequency-dependent "Na+-entry budgets" for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis.
    • References:
      J Comp Physiol A. 1987 Nov;161(6):811-24. (PMID: 3430413)
      J Comp Physiol A. 1998 Oct;183(4):419-32. (PMID: 9809452)
      J Comp Physiol A. 1993 Sep;173(3):281-92. (PMID: 8229895)
      Curr Opin Neurobiol. 2016 Dec;41:129-135. (PMID: 27664945)
      J Gen Physiol. 1991 May;97(5):1013-41. (PMID: 1650809)
      Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. (PMID: 27357684)
      J Gen Physiol. 1978 Dec;72(6):847-62. (PMID: 731201)
      J Exp Biol. 2013 Jul 1;216(Pt 13):2459-68. (PMID: 23761471)
      J Physiol Paris. 2008 Jul-Nov;102(4-6):347-56. (PMID: 18984049)
      Am J Physiol Heart Circ Physiol. 2016 Feb 1;310(3):H326-36. (PMID: 26608338)
      J Exp Biol. 2013 Jul 1;216(Pt 13):2451-8. (PMID: 23761470)
      PLoS Comput Biol. 2010 May 06;6(5):e1000769. (PMID: 20463870)
      J Cereb Blood Flow Metab. 2012 Jul;32(7):1222-32. (PMID: 22434069)
      Brain Behav Evol. 2014;84(4):288-302. (PMID: 25428716)
      Annu Rev Physiol. 2004;66:735-69. (PMID: 14977420)
      J Neurosci. 2000 May 1;20(9):3408-14. (PMID: 10777803)
      Nature. 2014 Jun 5;510(7503):109-14. (PMID: 24847885)
      J Neurosci. 1995 May;15(5 Pt 2):4023-32. (PMID: 7751963)
      Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18571-6. (PMID: 23090991)
      J Exp Biol. 1999 May;202(Pt 10):1185-93. (PMID: 10210660)
      Integr Comp Biol. 2016 Nov;56(5):889-900. (PMID: 27549201)
      Cell. 2001 Jan 26;104(2):217-31. (PMID: 11207363)
      J Physiol. 1952 Aug;117(4):500-44. (PMID: 12991237)
      J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45. (PMID: 11598490)
      Hum Brain Mapp. 2015 Jan;36(1):391-414. (PMID: 25277370)
      J Neurosci. 2014 Jun 11;34(24):8358-72. (PMID: 24920639)
      J Exp Biol. 2011 Dec 15;214(Pt 24):4141-50. (PMID: 22116756)
      Comp Biochem Physiol A Mol Integr Physiol. 1998 Jan;119(1):225-41. (PMID: 11253789)
      J Neurophysiol. 2015 Jul;114(1):520-30. (PMID: 25925327)
      J Physiol. 1980 Sep;306:377-410. (PMID: 6257898)
      Curr Biol. 2003 Mar 18;13(6):493-7. (PMID: 12646132)
      Science. 2014 Dec 5;346(6214):1231-4. (PMID: 25477462)
      J Neurocytol. 1975 Feb;4(1):87-114. (PMID: 1113145)
      Biophys J. 1993 Jul;65(1):270-88. (PMID: 8396455)
      J Comp Physiol A. 1987 Nov;161(6):825-36. (PMID: 3430414)
      Neuron. 2012 Sep 6;75(5):762-77. (PMID: 22958818)
      Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5747-52. (PMID: 8650164)
      J Neurosci. 2014 Jan 1;34(1):197-201. (PMID: 24381281)
      J R Soc Interface. 2018 Jan;15(138):. (PMID: 29367237)
      PLoS One. 2015 Nov 05;10(11):e0141764. (PMID: 26540409)
      J Neurosci. 2012 Jan 4;32(1):356-71. (PMID: 22219296)
      J Neurophysiol. 2013 Apr;109(7):1713-23. (PMID: 23324315)
      J Physiol. 2015 Mar 1;593(5):1213-38. (PMID: 25545278)
      J Physiol. 1993 Nov;471:129-57. (PMID: 8120801)
      Science. 2014 Jun 27;344(6191):1522-5. (PMID: 24970089)
      J Comput Neurosci. 2012 Oct;33(2):301-19. (PMID: 22476614)
    • Accession Number:
      0 (Cations)
      0 (Electrolytes)
      8L70Q75FXE (Adenosine Triphosphate)
      9NEZ333N27 (Sodium)
    • Publication Date:
      Date Created: 20180501 Date Completed: 20180806 Latest Revision: 20181114
    • Publication Date:
      20221213
    • Accession Number:
      PMC5927439
    • Accession Number:
      10.1371/journal.pone.0196508
    • Accession Number:
      29708986