Decipher reliable biomarkers of brain aging by integrating literature-based evidence with interactome data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 9607880 Publication Model: Electronic Cited Medium: Internet ISSN: 2092-6413 (Electronic) Linking ISSN: 12263613 NLM ISO Abbreviation: Exp Mol Med Subsets: MEDLINE
    • Publication Information:
      Publication: Jan. 2013- : New York : Nature Publishing Group
      Original Publication: Seoul : Korean Society of Medical Biochemistry and Molecular Biology, 1996-
    • Subject Terms:
    • Abstract:
      Aging is an inevitable progressive decline in every physiological function and serves as a primary risk factor for cognitive decline and Alzheimer's disease. Thus, age-dependent impairments in cognitive function must be understood in association with general aging processes with an integrative approach in a systemic manner. An integrative aging gene network was constructed based on mutual molecular interactions using literature-curated interactome data and separated into functionally distinct modules. To investigate key surrogate biomarkers of the aging brain in the context of the general aging process, co-expression networks were built on post-mortem and Alzheimer's brain transcriptome data. In both the normal aging brain and the brain affected by Alzheimer's disease, the immune-related co-expression module was positively correlated with advancing age, whereas the synaptic transmission-related co-expression module was decreased with age. Importantly, the network topology-based analysis indicated that complement system genes were prioritized as a surrogate biomarker in evaluating the process of brain aging. Our public data-centered analysis coupled with experimental validation revealed that the complement system is likely to be a master regulator in initiating and regulating the immune system in the aging brain and could serve as reliable and surrogate biomarkers for the diagnosis of cognitive dysfunction.
    • References:
      Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). (PMID: 10.1016/j.cell.2013.05.039)
      Deary, I. J. et al. Age-associated cognitive decline. Br. Med. Bull. 92, 135–152 (2009). (PMID: 10.1093/bmb/ldp033)
      Hebert, L. E. et al. Age-specific incidence of Alzheimer’s disease in a community population. JAMA 273, 1354–1359 (1995). (PMID: 10.1001/jama.1995.03520410048025)
      Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl Acad. Sci. USA 105, 15605–15610 (2008). (PMID: 10.1073/pnas.0806883105)
      Xue, H. et al. A modular network model of aging. Mol. Syst. Biol. 3, 147 (2007). (PMID: 10.1038/msb4100189)
      Craig, T. et al. The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Res. 43, D873–878 (2015). (PMID: 10.1093/nar/gku843)
      Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–1033 (2013). (PMID: 10.1093/nar/gks1155)
      Cho, D. Y., Kim, Y. A. & Przytycka, T. M. Chapter 5: network biology approach to complex diseases. PLoS Comput. Biol. 8, e1002820 (2012). (PMID: 10.1371/journal.pcbi.1002820)
      Mitra, K., Carvunis, A. R., Ramesh, S. K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14, 719–732 (2013). (PMID: 10.1038/nrg3552)
      Park, C. et al. Systematic identification of an integrative network module during senescence from time-series gene expression. BMC Syst. Biol. 11, 36 (2017). (PMID: 10.1186/s12918-017-0417-1)
      Menche, J. et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347, 1257601 (2015). (PMID: 10.1126/science.1257601)
      Ghiassian, S. D., Menche, J. & Barabasi, A. L. A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput. Biol. 11, e1004120 (2015). (PMID: 10.1371/journal.pcbi.1004120)
      Fresno, C. & Fernandez, E. A. RDAVIDWebService: a versatile R interface to DAVID. Bioinformatics 29, 2810–2811 (2013). (PMID: 10.1093/bioinformatics/btt487)
      Lotia, S., Montojo, J., Dong, Y., Bader, G. D. & Pico, A. R. Cytoscape app store. Bioinformatics 29, 1350–1351 (2013). (PMID: 10.1093/bioinformatics/btt138)
      Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003). (PMID: 10.1186/1471-2105-4-2)
      Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010). (PMID: 10.1093/bioinformatics/btq431)
      Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). (PMID: 10.1186/1471-2105-9-559)
      Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflamm. 9, 179 (2012). (PMID: 10.1186/1742-2094-9-179)
      Han, H. W., Ohn, J. H., Moon, J. & Kim, J. H. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks. Nucleic Acids Res. 41, 9209–9217 (2013). (PMID: 10.1093/nar/gkt683)
      Wuchty, S. & Almaas, E. Peeling the yeast protein network. Proteomics 5, 444–449 (2005). (PMID: 10.1002/pmic.200400962)
      Kim, K. S. et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol. Aging 34, 2408–2420 (2013). (PMID: 10.1016/j.neurobiolaging.2013.03.029)
      Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001). (PMID: 10.1006/meth.2001.1262)
      Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294 (2006). (PMID: 10.1038/nrn1886)
      Parikshak, N. N., Gandal, M. J. & Geschwind, D. H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16, 441–458 (2015). (PMID: 10.1038/nrg3934)
      Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015). (PMID: 10.1016/j.neuron.2015.03.035)
      Solfrizzi, V. et al. Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res. Rev. 9, 184–199 (2010). (PMID: 10.1016/j.arr.2009.07.005)
      Vlassenko, A. G. & Raichle, M. E. Brain aerobic glycolysis functions and Alzheimer’s disease. Clin. Transl. Imaging 3, 27–37 (2015). (PMID: 10.1007/s40336-014-0094-7)
      Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90, 278–291 (2016). (PMID: 10.1016/j.neuron.2016.03.011)
      Driscoll, I. et al. The aging hippocampus: cognitive, biochemical and structural findings. Cereb. Cortex 13, 1344–1351 (2003). (PMID: 10.1093/cercor/bhg081)
      Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging 34, 1653–1661 (2013). (PMID: 10.1016/j.neurobiolaging.2012.11.024)
      Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016). (PMID: 10.1126/science.aad8373)
      Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004). (PMID: 10.1038/nature02661)
    • Accession Number:
      0 (Biomarkers)
    • Publication Date:
      Date Created: 20180414 Date Completed: 20190211 Latest Revision: 20220409
    • Publication Date:
      20240628
    • Accession Number:
      PMC5938059
    • Accession Number:
      10.1038/s12276-018-0057-6
    • Accession Number:
      29651153