Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 8102140 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2401 (Electronic) Linking ISSN: 02706474 NLM ISO Abbreviation: J Neurosci Subsets: MEDLINE
- Publication Information:
Publication: Washington, DC : Society for Neuroscience
Original Publication: [Baltimore, Md.] : The Society, c1981-
- Subject Terms:
- Abstract:
Human umbilical tissue-derived cells (hUTC or palucorcel) are currently under clinical investigation for the treatment of geographic atrophy, a late stage of macular degeneration, but how hUTC transplantation mediates vision recovery is not fully elucidated. Subretinal administration of hUTC preserves visual function in the Royal College of Surgeons (RCS) rat, a genetic model of retinal degeneration caused by Mertk loss of function. hUTC secrete synaptogenic and neurotrophic factors that improve the health and connectivity of the neural retina. Therefore, we investigated the progression of synapse and photoreceptor loss and whether hUTC treatment preserves photoreceptors and synaptic connectivity in the RCS rats of both sexes. We found that RCS retinas display significant deficits in synaptic development already by postnatal day 21 (P21), before the onset of photoreceptor degeneration. Subretinal transplantation of hUTC at P21 is necessary to rescue visual function in RCS rats, and the therapeutic effect is enhanced with repeated injections. Synaptic development defects occurred concurrently with morphological changes in Müller glia, the major perisynaptic glia in the retina. hUTC transplantation strongly diminished Müller glia reactivity and specifically protected the α2δ-1-containing retinal synapses, which are responsive to thrombospondin family synaptogenic proteins secreted by Müller glia. Müller glial reactivity and reduced synaptogenesis observed in RCS retinas could be recapitulated by CRISPR/Cas9-mediated loss-of- Mertk in Müller glia in wild-type rats. Together, our results show that hUTC transplantation supports the health of retina at least in part by preserving the functions of Müller glial cells, revealing a previously unknown aspect of hUTC transplantation-based therapy. SIGNIFICANCE STATEMENT Despite the promising effects observed in clinical trials and preclinical studies, how subretinal human umbilical tissue-derived cell (hUTC) transplantation mediates vision improvements is not fully known. Using a rat model of retinal degeneration, the RCS rat (lacking Mertk ), here we provide evidence that hUTC transplantation protects visual function and health by protecting photoreceptors and preserving retinal synaptic connectivity. Furthermore, we find that loss of Mertk function only in Müller glia is sufficient to impair synaptic development and cause activation of Müller glia. hUTC transplantation strongly attenuates the reactivity of Müller glia in RCS rats. These findings highlight novel cellular and molecular mechanisms within the neural retina, which underlie disease mechanisms and pinpoint Müller glia as a novel cellular target for hUTC transplantation.
(Copyright © 2018 the authors 0270-6474/18/382923-21$15.00/0.)
- References:
Nature. 2012 May 27;486(7403):410-4. (PMID: 22722203)
J Comp Neurol. 2008 Jul 10;509(2):225-38. (PMID: 18465787)
Nat Neurosci. 2012 Jan 22;15(3):487-95, S1-2. (PMID: 22267162)
Hum Mol Genet. 2000 Mar 1;9(4):645-51. (PMID: 10699188)
Dev Neurobiol. 2012 Jun;72(6):755-65. (PMID: 21954108)
Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1906-12. (PMID: 17389527)
Adv Exp Med Biol. 2010;664:575-83. (PMID: 20238061)
Front Cell Neurosci. 2015 Dec 22;9:484. (PMID: 26733810)
J Neurocytol. 1995 Jul;24(7):507-17. (PMID: 7561959)
Tohoku J Exp Med. 2000 Jul;191(3):157-66. (PMID: 10997556)
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):E440-9. (PMID: 21788491)
Stroke. 2011 May;42(5):1437-44. (PMID: 21493915)
Elife. 2014 Dec 17;3:. (PMID: 25517933)
Nature. 2015 Apr 9;520(7546):186-91. (PMID: 25830891)
Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2877-87. (PMID: 27233037)
J Neurophysiol. 1969 May;32(3):339-55. (PMID: 4306897)
Vision Res. 2005 Feb;45(3):343-54. (PMID: 15607350)
PLoS One. 2015 Mar 20;10(3):e0120415. (PMID: 25793273)
J Cell Biol. 1962 Jul;14:73-109. (PMID: 13887627)
Cell. 2016 Jan 14;164(1-2):183-196. (PMID: 26771491)
Science. 2001 Jan 26;291(5504):657-61. (PMID: 11158678)
Neurobiol Dis. 2000 Dec;7(6 Pt B):586-99. (PMID: 11114258)
Ophthalmic Res. 2014;52(2):81-8. (PMID: 25138030)
Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4611-6. (PMID: 15557474)
Prog Retin Eye Res. 2014 Sep;42:44-84. (PMID: 24984227)
PLoS One. 2009 Oct 14;4(10):e7467. (PMID: 19826483)
JAMA Ophthalmol. 2014 Mar;132(3):338-45. (PMID: 24626824)
Matrix Biol. 2012 Apr;31(3):170-7. (PMID: 22285841)
Expert Opin Biol Ther. 2016;16(1):7-14. (PMID: 26414165)
J Biol Chem. 2002 May 10;277(19):17016-22. (PMID: 11861639)
Exp Eye Res. 2013 Jun;111:36-49. (PMID: 23541831)
Lancet. 2012 May 5;379(9827):1728-38. (PMID: 22559899)
Vis Neurosci. 2001 Sep-Oct;18(5):781-7. (PMID: 11925013)
Cold Spring Harb Protoc. 2013 Jul 01;2013(7):643-52. (PMID: 23818667)
Cell. 2005 Feb 11;120(3):421-33. (PMID: 15707899)
J Cell Biol. 1980 Jun;85(3):890-902. (PMID: 6248568)
Am J Ophthalmol. 2017 Jul;179:67-80. (PMID: 28435054)
Neuroreport. 2004 Jul 19;15(10):1633-7. (PMID: 15232297)
Mol Vis. 2012;18:1197-214. (PMID: 22665967)
Invest Ophthalmol Vis Sci. 1994 May;35(6):2693-9. (PMID: 8188463)
Prog Retin Eye Res. 2016 Mar;51:1-40. (PMID: 26113209)
Cell. 2009 Oct 16;139(2):380-92. (PMID: 19818485)
J Neurosci. 2015 Nov 25;35(47):15649-65. (PMID: 26609158)
Cell Transplant. 2013;22(9):1569-76. (PMID: 23127976)
Eur J Neurosci. 2005 Sep;22(5):1057-72. (PMID: 16176347)
Brain Res. 2012 Dec 13;1489:104-12. (PMID: 23063717)
J Comp Neurol. 2005 Oct 31;491(4):400-17. (PMID: 16175546)
Development. 2017 Apr 15;144(8):1368-1381. (PMID: 28400433)
J Vis Exp. 2010 Nov 16;(45):. (PMID: 21113117)
PLoS One. 2012;7(8):e42845. (PMID: 22900057)
Neuroscience. 2003;119(3):813-20. (PMID: 12809702)
Somatosens Mot Res. 2013 Dec;30(4):185-96. (PMID: 23758412)
Stem Cell Res Ther. 2015 Nov 09;6:219. (PMID: 26553210)
J Neurosci. 2010 Sep 8;30(36):11951-61. (PMID: 20826659)
J Comp Neurol. 1997 Nov 10;388(1):1-22. (PMID: 9364235)
Nat Commun. 2016 Feb 04;7:10472. (PMID: 26843334)
Stem Cells. 2016 Feb;34(2):367-79. (PMID: 26523756)
Brain Res. 1983 Feb 14;261(1):43-52. (PMID: 6132662)
Nat Neurosci. 2000 Sep;3(9):873-80. (PMID: 10966617)
Stem Cells. 2007 Mar;25(3):602-11. (PMID: 17053209)
Invest Ophthalmol Vis Sci. 2008 Jan;49(1):416-21. (PMID: 18172120)
- Grant Information:
F32 EY027997 United States EY NEI NIH HHS; R01 DA031833 United States DA NIDA NIH HHS; T32 AG000029 United States AG NIA NIH HHS
- Contributed Indexing:
Keywords: MERTK; Müller glia; cell transplantation; retinal degeneration; synapse formation; thrombospondins
- Publication Date:
Date Created: 20180213 Date Completed: 20190705 Latest Revision: 20240716
- Publication Date:
20240716
- Accession Number:
PMC5864147
- Accession Number:
10.1523/JNEUROSCI.1532-17.2018
- Accession Number:
29431645
No Comments.