Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      A principal question in MAP kinase (MAPK/MPK) cascade signalling is how similar components dictate different specificity in the information-processing machineries from yeast to humans and plants. In Arabidopsis, how MPK3/6 modulates distinct outputs in diverse signal transduction pathways remains elusive. By combining systematic cellular and genetic screens, here we uncover a previously unexpected MKK9–MPK3/MPK6 cascade promoting ethylene-insensitive 3 (EIN3)-mediated transcription in ethylene signalling. The mkk9 mutant exhibits a broad spectrum of moderate ethylene-insensitive phenotypes, and translocated MKK9 governs nuclear signalling downstream of receptors. Breaking a linear model and conventional MAPK signalling, ethylene inactivates the negative regulator constitutive triple response 1 (CTR1, a Raf-like MAPK kinase kinase (MAPKKK)) to activate the positive MKK9–MPK3/6 cascade. The bifurcate and antagonistic CTR1 and MKK9 pathways are both critical in determining ethylene-signalling specificity through two MAPK phosphorylation sites with opposite effects on EIN3 stability. The results suggest a new paradigm for linking intertwined MAPK cascades to control quantitative responses and specificity in signalling networks. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Nature is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)