Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Quintero MC;Quintero MC; Putnam RW; Putnam RW; Cordovez JM; Cordovez JM
  • Source:
    PLoS computational biology [PLoS Comput Biol] 2017 Dec 21; Vol. 13 (12), pp. e1005853. Date of Electronic Publication: 2017 Dec 21 (Print Publication: 2017).
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't; Validation Study
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • Subject Terms:
    • Abstract:
      Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC). We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes), in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously thought. This highlights the importance of considering electrical synaptic transmission in studies of intrinsic chemosensitivity.
    • References:
      J Bras Pneumol. 2009 Jul;35(7):698-708. (PMID: 19669009)
      Prog Neurobiol. 1999 Nov;59(4):299-331. (PMID: 10501632)
      Exp Physiol. 2005 May;90(3):259-66; discussion 266-9. (PMID: 15728134)
      Dialogues Clin Neurosci. 2011;13(4):475-83. (PMID: 22275852)
      Annu Rev Neurosci. 2003;26:239-66. (PMID: 12598679)
      J Physiol. 2006 Apr 15;572(Pt 2):311. (PMID: 16484293)
      J Physiol. 2002 Jun 1;541(Pt 2):493-509. (PMID: 12042354)
      Adv Exp Med Biol. 2008;605:301-5. (PMID: 18085289)
      Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2569-78. (PMID: 25092170)
      Am J Physiol Cell Physiol. 2004 Dec;287(6):C1493-526. (PMID: 15525685)
      Braz J Med Biol Res. 2011 Sep;44(9):883-9. (PMID: 21789465)
      J Biol Chem. 2007 Oct 26;282(43):31558-68. (PMID: 17711864)
      Am J Physiol Cell Physiol. 2011 Sep;301(3):C729-38. (PMID: 21307341)
      J Comput Neurosci. 2000 Nov-Dec;9(3):237-57. (PMID: 11139041)
      Respir Physiol Neurobiol. 2010 Oct 31;173(3):201-12. (PMID: 20399912)
      Respir Physiol Neurobiol. 2010 Oct 31;173(3):264-73. (PMID: 20435170)
      Am J Physiol Regul Integr Comp Physiol. 2015 Jun 15;308(12):R1045-61. (PMID: 25833936)
      Am J Physiol Cell Physiol. 2005 Nov;289(5):C1094-104. (PMID: 16014703)
      Pflugers Arch. 2008 Mar;455(6):1119-28. (PMID: 17851683)
      Am J Physiol Cell Physiol. 2010 Mar;298(3):C635-46. (PMID: 20042730)
      Am J Physiol Cell Physiol. 2007 Jan;292(1):C278-91. (PMID: 16928773)
      J Neurosci. 2007 Dec 19;27(51):14049-58. (PMID: 18094244)
      J Physiol. 2000 May 1;524 Pt 3:725-35. (PMID: 10790154)
      J Neurophysiol. 1997 Apr;77(4):2007-26. (PMID: 9114251)
      J Neurophysiol. 2011 Jun;105(6):3080-91. (PMID: 21471394)
      Respir Physiol Neurobiol. 2014 Dec 1;204:3-13. (PMID: 25038523)
      Int J Biochem Cell Biol. 2003 Oct;35(10):1413-35. (PMID: 12818238)
      Annu Rev Physiol. 2013;75:423-52. (PMID: 23121137)
      Am J Respir Crit Care Med. 2008 May 1;177(9):947-51. (PMID: 18434334)
      Transl Psychiatry. 2015 May 26;5:e572. (PMID: 26080089)
      J Neurophysiol. 1997 Apr;77(4):1994-2006. (PMID: 9114250)
      Pflugers Arch. 2010 Nov;460(6):953-64. (PMID: 20683624)
      Adv Exp Med Biol. 2008;605:333-7. (PMID: 18085295)
      J Physiol. 2012 May 15;590(10):2183-4. (PMID: 22589206)
      Respir Physiol. 2001 Dec;129(1-2):257-68. (PMID: 11738659)
      Am J Physiol Regul Integr Comp Physiol. 2013 Oct 1;305(7):R780-92. (PMID: 23948777)
      Prog Neurobiol. 2014 Jul;118:59-101. (PMID: 24784445)
      Front Physiol. 2014 Feb 13;5:43. (PMID: 24592239)
      J Appl Physiol (1985). 2009 Apr;106(4):1464-6. (PMID: 18467549)
      Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R763-73. (PMID: 19144749)
      Respir Physiol. 2001 Dec;129(1-2):159-74. (PMID: 11738652)
      Respir Physiol Neurobiol. 2005 Nov 15;149(1-3):165-79. (PMID: 15876557)
      J Neurosci. 1987 Nov;7(11):3687-94. (PMID: 2890723)
      J Physiol. 2011 Dec 1;589(Pt 23):5561-79. (PMID: 22005672)
      J Physiol. 1993 Sep;469:341-63. (PMID: 7505824)
      Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):3-11. (PMID: 18706532)
      J Appl Physiol (1985). 2012 May;112(10):1715-26. (PMID: 22403350)
      J Appl Physiol (1985). 1985 Feb;58(2):357-64. (PMID: 3920185)
      Respir Physiol Neurobiol. 2009 Mar 31;166(1):4-12. (PMID: 19056522)
      Pflugers Arch. 2011 Mar;461(3):337-44. (PMID: 21234597)
      J Comput Neurosci. 2011 Jun;30(3):607-32. (PMID: 20927576)
      J Appl Physiol (1985). 2008 Aug;105(2):404-16. (PMID: 18535135)
      Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R851-61. (PMID: 15905224)
      J Physiol. 2008 Apr 15;586(8):2043-8. (PMID: 18308822)
      Respir Physiol Neurobiol. 2009 Aug 31;168(1-2):49-58. (PMID: 19394450)
      J Appl Physiol (1985). 2010 Jun;108(6):1796-802. (PMID: 20093663)
      Am J Physiol Cell Physiol. 2003 Jan;284(1):C145-55. (PMID: 12388081)
    • Accession Number:
      142M471B3J (Carbon Dioxide)
    • Publication Date:
      Date Created: 20171222 Date Completed: 20180123 Latest Revision: 20200306
    • Publication Date:
      20221213
    • Accession Number:
      PMC5755939
    • Accession Number:
      10.1371/journal.pcbi.1005853
    • Accession Number:
      29267284