LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101509707 Publication Model: Print Cited Medium: Internet ISSN: 1759-6653 (Electronic) Linking ISSN: 17596653 NLM ISO Abbreviation: Genome Biol Evol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Oxford University Press
    • Subject Terms:
    • Abstract:
      The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
      (© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
    • References:
      Genetics. 2010 May;185(1):95-103. (PMID: 20215470)
      BMC Evol Biol. 2017 Apr 4;17 (1):95. (PMID: 28376717)
      Mol Biol Evol. 2005 Dec;22(12):2444-56. (PMID: 16120808)
      Mol Biol Evol. 2012 Dec;29(12):3817-26. (PMID: 22844073)
      BMC Genomics. 2008 Aug 10;9:382. (PMID: 18691433)
      Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):E8106-E8113. (PMID: 27911846)
      Cell. 2011 Mar 4;144(5):732-44. (PMID: 21353298)
      PLoS Genet. 2015 Apr 22;11(4):e1005189. (PMID: 25902173)
      Genome Res. 2002 Jul;12(7):1075-9. (PMID: 12097344)
      Nat Rev Genet. 2007 Oct;8(10):762-75. (PMID: 17846636)
      Genes (Basel). 2011 Jan 10;2(1):1-20. (PMID: 24710136)
      Bioinformatics. 2012 Dec 1;28(23):3150-2. (PMID: 23060610)
      New Phytol. 2015 Dec;208(4):1149-56. (PMID: 26192091)
      Nat Genet. 1998 Sep;20(1):43-5. (PMID: 9731528)
      Genome Biol. 2004;5(10):R79. (PMID: 15461797)
      Plant J. 2006 Mar;45(6):908-16. (PMID: 16507082)
      Gene. 2015 May 15;562(2):180-7. (PMID: 25726917)
      Nat Rev Genet. 2007 Dec;8(12):973-82. (PMID: 17984973)
      Cytogenet Genome Res. 2005;110(1-4):462-7. (PMID: 16093699)
      Gene. 2015 Aug 15;568(1):89-99. (PMID: 25982862)
      Mol Biol Evol. 2003 Apr;20(4):528-40. (PMID: 12654934)
      Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9573-8. (PMID: 12060715)
      Genetics. 2016 May;203(1):159-71. (PMID: 26944917)
      PLoS Biol. 2010 Mar 09;8(3):e1000326. (PMID: 20231873)
      PLoS Biol. 2010 Mar 09;8(3):e1000327. (PMID: 20231874)
      Genome Biol. 2014 Mar 04;15(3):R59. (PMID: 24647006)
      PLoS One. 2014 Sep 15;9(9):e107679. (PMID: 25222863)
      Science. 2009 Nov 20;326(5956):1112-5. (PMID: 19965430)
      Mol Biol Evol. 2013 Dec;30(12):2725-9. (PMID: 24132122)
      Genetics. 2014 Mar;196(3):891-909. (PMID: 24653211)
      Plant Cell. 1999 Sep;11(9):1769-1784. (PMID: 10488242)
      PLoS One. 2014 Aug 01;9(8):e103145. (PMID: 25084460)
      Plant J. 2010 Aug;63(4):584-98. (PMID: 20525006)
      Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17811-6. (PMID: 19815511)
      BMC Genomics. 2007 Jul 06;8:218. (PMID: 17617907)
      BMC Genomics. 2013 Mar 04;14:142. (PMID: 23452340)
      Nat Rev Genet. 2002 May;3(5):329-41. (PMID: 11988759)
      Genetics. 2016 Dec;204(4):1613-1626. (PMID: 27794028)
      Genes Dev. 2015 Oct 15;29(20):2183-202. (PMID: 26494791)
      Dev Cell. 2011 Mar 15;20(3):285-7. (PMID: 21397838)
      Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
      Genome Res. 2009 Jun;19(6):1026-32. (PMID: 19372385)
      Science. 2013 Dec 20;342(6165):1241089. (PMID: 24357323)
      Genome Res. 2004 May;14(5):860-9. (PMID: 15078861)
      Genes Dev. 2015 Jun 15;29(12):1256-70. (PMID: 26109049)
      Genetics. 2005 Jul;170(3):1209-20. (PMID: 15834137)
      Nature. 2005 Aug 11;436(7052):793-800. (PMID: 16100779)
      Nature. 2013 May 30;497(7451):579-84. (PMID: 23698360)
      BMC Genomics. 2010 Jul 07;11:420. (PMID: 20609256)
      Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
      Gene. 2007 Apr 1;390(1-2):92-7. (PMID: 17134852)
      Gene. 1995 Dec 29;167(1-2):GC1-10. (PMID: 8566757)
      BMC Evol Biol. 2012 Jan 20;12:8. (PMID: 22264329)
      PLoS One. 2015 Nov 25;10(11):e0143424. (PMID: 26606051)
      Nature. 2004 Jul 22;430(6998):471-6. (PMID: 15269773)
      Science. 2006 Sep 15;313(5793):1596-604. (PMID: 16973872)
      Nature. 2010 Feb 11;463(7282):763-8. (PMID: 20148030)
      Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16240-5. (PMID: 22988127)
      J Mol Evol. 2015 Feb;80(2):120-9. (PMID: 25608479)
      Plant Physiol. 2001 Mar;125(3):1342-53. (PMID: 11244114)
      Plant Cell. 1997 Sep;9(9):1633-46. (PMID: 9338965)
      Curr Opin Plant Biol. 2012 Nov;15(5):503-10. (PMID: 22940592)
      Bioinformatics. 2013 Jun 15;29(12):1492-7. (PMID: 23698863)
      Sci Rep. 2016 Jun 27;6:28710. (PMID: 27346230)
      Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5880-5. (PMID: 22451936)
      Genome Biol Evol. 2013;5(5):954-65. (PMID: 23426643)
      Science. 1996 Nov 1;274(5288):765-8. (PMID: 8864112)
      New Phytol. 2013 Jun;198(4):1155-64. (PMID: 23574344)
      BMC Genomics. 2008 Feb 25;9:93. (PMID: 18298833)
      J Mol Evol. 2002 Jul;55(1):14-23. (PMID: 12165839)
      Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
      BMC Bioinformatics. 2009 Dec 15;10:421. (PMID: 20003500)
      Genetics. 2014 Aug;197(4):1153-63. (PMID: 24907262)
      PLoS Genet. 2009 Nov;5(11):e1000732. (PMID: 19936065)
      Science. 2012 Nov 9;338(6108):758-67. (PMID: 23145453)
      Nature. 2007 Sep 27;449(7161):463-7. (PMID: 17721507)
    • Contributed Indexing:
      Keywords: Picea; Pinus; angiosperm; gene conversion; genome size; gymnosperm; recombination suppression; retroelement
    • Accession Number:
      0 (Retroelements)
    • Publication Date:
      Date Created: 20171212 Date Completed: 20181126 Latest Revision: 20181126
    • Publication Date:
      20221213
    • Accession Number:
      PMC5751070
    • Accession Number:
      10.1093/gbe/evx260
    • Accession Number:
      29228262