High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Cell Press Country of Publication: United States NLM ID: 0370626 Publication Model: Print Cited Medium: Internet ISSN: 1542-0086 (Electronic) Linking ISSN: 00063495 NLM ISO Abbreviation: Biophys J Subsets: MEDLINE
    • Publication Information:
      Publication: Cambridge, MA : Cell Press
      Original Publication: New York, Published by Rockefeller University Press [etc.] for the Biophysical Society.
    • Subject Terms:
    • Abstract:
      We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship.
      (Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
    • References:
      Biomaterials. 2003 Feb;24(3):401-16. (PMID: 12423595)
      J Vis Exp. 2014 Aug 15;(90):e51087. (PMID: 25145703)
      J Mech Behav Biomed Mater. 2009 Apr;2(2):130-7. (PMID: 19627816)
      J Comput Chem. 2009 Jul 30;30(10):1545-614. (PMID: 19444816)
      ACS Nano. 2015 Jan 27;9(1):449-63. (PMID: 25562726)
      Nat Methods. 2011 Mar;8(3):221-9. (PMID: 21358626)
      J Biol Chem. 2002 Sep 6;277(36):33349-52. (PMID: 12105229)
      Science. 1978 May 12;200(4342):618-27. (PMID: 347575)
      Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2462-6. (PMID: 25588987)
      Science. 2012 Jun 1;336(6085):1171-4. (PMID: 22654060)
      J Chem Phys. 2007 Jan 7;126(1):014101. (PMID: 17212484)
      Phys Rev Lett. 2003 Feb 21;90(7):075503. (PMID: 12633242)
      J Biol Chem. 2013 Apr 26;288(17):12295-304. (PMID: 23486477)
      J Phys Chem Lett. 2016 Jul 21;7(14):2758-64. (PMID: 27387853)
      Nanoscale. 2012 Aug 7;4(15):4426-9. (PMID: 22688679)
      Curr Opin Struct Biol. 2001 Apr;11(2):224-30. (PMID: 11297932)
      Methods Enzymol. 2011;498:349-61. (PMID: 21601685)
      Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12683-7. (PMID: 14559970)
      Microsc Res Tech. 2011 Jul;74(7):642-63. (PMID: 21698716)
      J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
      Annu Rev Biochem. 2006;75:333-66. (PMID: 16756495)
      Sci Rep. 2016 Nov 30;6:37970. (PMID: 27901068)
      Nano Lett. 2015 May 13;15(5):3035-40. (PMID: 25915774)
      Science. 2009 May 22;324(5930):1051-5. (PMID: 19342549)
      Nat Nanotechnol. 2011 Jul 31;6(8):469-79. (PMID: 21804553)
      Prog Biophys Mol Biol. 1996;65(1-2):83-111. (PMID: 9029942)
      Phys Rev Lett. 2008 May 16;100(19):198301. (PMID: 18518493)
      Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
      Nanotechnology. 2014 Mar 14;25(10):105703. (PMID: 24532127)
      Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16410-5. (PMID: 17925444)
      Nat Mater. 2010 Apr;9(4):359-67. (PMID: 20228820)
      Biophys J. 2017 Feb 28;112(4):584-594. (PMID: 28256219)
      Annu Rev Biochem. 2010;79:65-87. (PMID: 20222824)
      Biophys J. 1998 Aug;75(2):662-71. (PMID: 9675168)
      J Chem Theory Comput. 2008 Mar;4(3):435-47. (PMID: 26620784)
    • Accession Number:
      0 (Antifreeze Proteins)
      0 (Insect Proteins)
    • Publication Date:
      Date Created: 20171109 Date Completed: 20171128 Latest Revision: 20181113
    • Publication Date:
      20231215
    • Accession Number:
      PMC5685653
    • Accession Number:
      10.1016/j.bpj.2017.09.003
    • Accession Number:
      29117519