Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101566598 Publication Model: Electronic Cited Medium: Internet ISSN: 2160-1836 (Electronic) Linking ISSN: 21601836 NLM ISO Abbreviation: G3 (Bethesda) Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [Oxford] : Oxford University Press
      Original Publication: Bethesda, MD : Genetics Society of America, 2011-
    • Subject Terms:
    • Abstract:
      Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates ( Histophilus somni , Mycoplasma bovis , Mannheimia haemolytica , and Pasteurella multocida ) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni , M. haemolytica , and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% ( P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes.
      (Copyright © 2017 Owen et al.)
    • References:
      Diagn Microbiol Infect Dis. 2014 Nov;80(3):171-6. (PMID: 25200256)
      Vet Microbiol. 2011 Jun 2;150(3-4):362-72. (PMID: 21482045)
      BMC Bioinformatics. 2014 Nov 25;15:356. (PMID: 25420514)
      Vet Microbiol. 2008 Jul 27;130(1-2):165-75. (PMID: 18308486)
      Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3460-5. (PMID: 11248100)
      Genome Res. 2002 Apr;12(4):656-64. (PMID: 11932250)
      PLoS One. 2012;7(5):e38239. (PMID: 22693604)
      Genome. 2017 Sep;60(9):743-755. (PMID: 28355490)
      Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
      Vet Clin North Am Food Anim Pract. 2008 Mar;24(1):139-53. (PMID: 18299036)
      J Vet Intern Med. 2011 Jul-Aug;25(4):772-83. (PMID: 21745245)
      J Antimicrob Chemother. 2012 Jan;67(1):91-100. (PMID: 22001176)
      Genome Announc. 2013 Oct 17;1(5):null. (PMID: 24136851)
      EBioMedicine. 2015 Sep 08;2(10):1447-55. (PMID: 26629539)
      Bioinformatics. 2007 May 15;23(10):1289-91. (PMID: 17379693)
      Psychometrika. 1948 Sep;13(3):185-7. (PMID: 18885738)
      J Antimicrob Chemother. 2016 Sep;71(9):2484-8. (PMID: 27365186)
      J Vet Med Sci. 2016 Feb;78(2):293-6. (PMID: 26346744)
      BMC Genomics. 2014 Dec 22;15:1164. (PMID: 25534905)
      Genome Announc. 2015 Mar 05;3(2):null. (PMID: 25745008)
      PeerJ. 2014 Jan 02;2:e238. (PMID: 24482759)
      Anim Sci J. 2014 Jan;85(1):96-9. (PMID: 24261609)
      J Antimicrob Chemother. 2015 Jan;70(1):93-7. (PMID: 25239467)
      Genome Announc. 2013 May 16;1(3):null. (PMID: 23682137)
      Genome Announc. 2013 May 30;1(3):null. (PMID: 23723408)
      J Antimicrob Chemother. 2012 Nov;67(11):2640-4. (PMID: 22782487)
      PLoS One. 2016 Mar 07;11(3):e0150797. (PMID: 26950338)
      Antimicrob Agents Chemother. 2013 Jan;57(1):458-65. (PMID: 23129055)
      Mol Biol Evol. 2010 Feb;27(2):221-4. (PMID: 19854763)
      Nature. 2011 Aug 24;477(7365):462-5. (PMID: 21866102)
      BMC Res Notes. 2015 Nov 27;8:728. (PMID: 26613761)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Antimicrob Agents Chemother. 2011 May;55(5):2475-7. (PMID: 21402855)
      Public Health Genomics. 2013;16(1-2):25-30. (PMID: 23548714)
      Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903. (PMID: 24777092)
      Euro Surveill. 2015;20(47):null. (PMID: 26625187)
      PLoS One. 2011;6(6):e20999. (PMID: 21731639)
      Trends Genet. 2014 Sep;30(9):401-7. (PMID: 25096945)
      J Antimicrob Chemother. 2001 Jul;48 Suppl 1:87-102. (PMID: 11420342)
      J Bacteriol. 2012 Jun;194(12):3292-3. (PMID: 22628516)
      Gene. 2016 Apr 25;581(1):85-93. (PMID: 26827796)
      J Vet Intern Med. 2015 Mar-Apr;29(2):705-13. (PMID: 25818224)
      Infect Immun. 2011 Feb;79(2):982-3. (PMID: 21134966)
      J Antimicrob Chemother. 2000 Jun;45(6):871-5. (PMID: 10837442)
      J Clin Microbiol. 2016 May;54(5):1243-50. (PMID: 26912748)
      J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
      J Antimicrob Chemother. 2001 Nov;48(5):631-40. (PMID: 11679552)
      Genome Announc. 2014 Oct 23;2(5):null. (PMID: 25342682)
      Vet Clin North Am Food Anim Pract. 2010 Jul;26(2):381-94. (PMID: 20619191)
      Genome Announc. 2015 Mar 12;3(2):null. (PMID: 25767233)
      Nucleic Acids Res. 2012 Aug;40(15):e115. (PMID: 22730293)
      Genome Biol. 2013;14(9):R101. (PMID: 24034426)
      J Clin Microbiol. 2014 Feb;52(2):438-48. (PMID: 24478472)
      Genome Med. 2014 Nov 20;6(11):90. (PMID: 25422674)
      PLoS One. 2015 Dec 04;10(12):e0144310. (PMID: 26637170)
      BMC Med Res Methodol. 2013 Jul 13;13:91. (PMID: 23848987)
      Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573. (PMID: 27789705)
      Genome Announc. 2015 May 07;3(3):null. (PMID: 25953160)
      J Clin Microbiol. 2016 Aug;54(8):1975-83. (PMID: 27008877)
      J Comput Biol. 2012 May;19(5):455-77. (PMID: 22506599)
      BMC Genomics. 2016 Nov 29;17 (1):982. (PMID: 27894259)
      Anim Health Res Rev. 2015 Dec;16(2):125-34. (PMID: 26373635)
      BMC Genomics. 2011 Nov 23;12:570. (PMID: 22111657)
      J Bacteriol. 2007 Mar;189(5):1890-8. (PMID: 17172329)
      Can Vet J. 2012 Jul;53(7):754-61. (PMID: 23277642)
    • Grant Information:
      T32 OD012201 United States OD NIH HHS
    • Contributed Indexing:
      Keywords: Histophilus somni; Mannheimia haemolytica; Mycoplasma bovis; Pasteurella multocida
    • Accession Number:
      0 (Anti-Infective Agents)
    • Publication Date:
      Date Created: 20170726 Date Completed: 20180503 Latest Revision: 20211022
    • Publication Date:
      20240829
    • Accession Number:
      PMC5592931
    • Accession Number:
      10.1534/g3.117.1137
    • Accession Number:
      28739600