Mg 2+ Binding Promotes SLV as a Scaffold in Varkud Satellite Ribozyme SLI-SLV Kissing Loop Junction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Cell Press Country of Publication: United States NLM ID: 0370626 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1542-0086 (Electronic) Linking ISSN: 00063495 NLM ISO Abbreviation: Biophys J Subsets: MEDLINE
    • Publication Information:
      Publication: Cambridge, MA : Cell Press
      Original Publication: New York, Published by Rockefeller University Press [etc.] for the Biophysical Society.
    • Subject Terms:
    • Abstract:
      Though the structure of the substrate stem loop I (SLI)-stem loop V (SLV) kissing loop junction of the Varkud Satellite ribozyme has been experimentally characterized, the dynamics of this Mg 2+ -dependent loop-loop interaction have been elusive. Specifically, each hairpin loop contains a U-turn motif, but only SLV shows a conformational shift triggered by Mg 2+ ion association. Here, we use molecular dynamics simulations to analyze the binding and dynamics of this kissing loop junction. We show that SLV acts as a scaffold, providing stability to the junction. Mg 2+ ions associate with SLV when it is part of the junction in a manner similar to when it is unbound, but there is no specificity in Mg 2+ binding for the SLI loop. This suggests that the entropic penalty of ordering the larger SLI is too high, allowing SLV to act as a scaffold for multiple substrate loop sequences.
      (Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
    • References:
      Biopolymers. 2000-2001;56(4):232-56. (PMID: 11754338)
      Biochemistry. 2007 Sep 11;46(36):10266-78. (PMID: 17705557)
      J Phys Chem B. 2017 Jan 26;121(3):451-462. (PMID: 27983843)
      Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7730-5. (PMID: 11427714)
      RNA. 2004 Mar;10(3):335-43. (PMID: 14970378)
      J Chem Theory Comput. 2016 Dec 13;12 (12 ):6192-6200. (PMID: 27951677)
      J Am Chem Soc. 2012 Jul 25;134(29):12043-53. (PMID: 22612276)
      J Chem Theory Comput. 2017 Feb 14;13(2):900-915. (PMID: 28048939)
      Biophys J. 2014 Apr 1;106(7):1508-19. (PMID: 24703312)
      Nucleic Acids Res. 2016 Jul 8;44(12 ):5883-91. (PMID: 27091499)
      RNA. 2015 May;21(5):963-74. (PMID: 25805858)
      Biochemistry. 2005 Mar 22;44(11):4157-70. (PMID: 15766243)
      J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. (PMID: 26592383)
      Biochemistry. 2006 Sep 5;45(35):10591-605. (PMID: 16939211)
      J Biomol Struct Dyn. 1999 Feb;16(4):845-62. (PMID: 10217454)
      J Chem Theory Comput. 2015 Sep 8;11(9):3969-72. (PMID: 26575892)
      J Phys Chem B. 2015 Dec 17;119(50):15460-70. (PMID: 26583536)
      J Phys Chem B. 2008 Jul 31;112(30):9020-41. (PMID: 18593145)
      Nucleic Acids Res. 2011 Aug;39(14):6223-8. (PMID: 21507887)
      Nat Chem. 2015 Oct;7(10):793-801. (PMID: 26391078)
      J Chem Theory Comput. 2009 Jun 9;5(6):1624-31. (PMID: 26609854)
      J Comput Chem. 2004 Jan 30;25(2):238-50. (PMID: 14648622)
      J Chem Theory Comput. 2015 Apr 14;11(4):1864-74. (PMID: 26574392)
      J Chem Theory Comput. 2017 Feb 14;13(2):395-399. (PMID: 28033005)
      Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1467-72. (PMID: 14755053)
      EMBO J. 1996 Jun 3;15(11):2820-5. (PMID: 8654379)
      RNA. 2013 Jul;19(7):916-26. (PMID: 23716711)
      RNA. 2012 Feb;18(2):300-7. (PMID: 22194311)
      J Chem Theory Comput. 2012 Apr 10;8(4):1493-502. (PMID: 26596759)
      Cell. 1990 May 18;61(4):685-96. (PMID: 2160856)
      Biochem Soc Trans. 2002 Nov;30(Pt 6):1162-6. (PMID: 12440996)
      Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16820-5. (PMID: 24043821)
      Nat Chem Biol. 2015 Nov;11(11):840-6. (PMID: 26414446)
      J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. (PMID: 26583988)
      J Chem Theory Comput. 2011 Sep 13;7(9):2886-2902. (PMID: 21921995)
      Nat Rev Mol Cell Biol. 2005 May;6(5):399-412. (PMID: 15956979)
      Biopolymers. 1992 May;32(5):523-35. (PMID: 1515543)
      J Chem Theory Comput. 2013 Apr 9;9(4):2115-25. (PMID: 26583558)
      Biophys J. 2007 Jun 1;92(11):3817-29. (PMID: 17351000)
      J Biomol NMR. 2012 Aug;53(4):321-39. (PMID: 22714631)
      J Chem Theory Comput. 2016 Jul 12;12(7):3382-9. (PMID: 27294370)
      RNA. 2014 Sep;20(9):1451-64. (PMID: 25051972)
      EMBO J. 2002 May 15;21(10):2461-71. (PMID: 12006498)
      RNA. 2008 Apr;14(4):736-48. (PMID: 18314503)
      Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7003-8. (PMID: 12782785)
      J Chem Theory Comput. 2014 Jan 14;10(1):289-297. (PMID: 24659926)
      Proteins. 2004 May 1;55(2):383-94. (PMID: 15048829)
      Molecules. 2016 Nov 18;21(11):. (PMID: 27869745)
      J Phys Chem B. 2015 Sep 24;119(38):12355-64. (PMID: 26328924)
      RNA. 2015 Sep;21(9):1578-90. (PMID: 26124199)
      Biochemistry. 2014 Jan 14;53(1):258-69. (PMID: 24325625)
      Curr Opin Struct Biol. 2012 Jun;22(3):262-72. (PMID: 22595008)
    • Grant Information:
      R01 GM098102 United States GM NIGMS NIH HHS
    • Accession Number:
      0 (Cations, Divalent)
      0 (RNA, Catalytic)
      0 (RNA, Fungal)
      EC 3.1.- (Endoribonucleases)
      EC 3.1.27.- (varkud satellite ribozyme)
      I38ZP9992A (Magnesium)
    • Publication Date:
      Date Created: 20170704 Date Completed: 20170821 Latest Revision: 20181113
    • Publication Date:
      20240829
    • Accession Number:
      PMC5529310
    • Accession Number:
      10.1016/j.bpj.2017.06.008
    • Accession Number:
      28669407