Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Oxford University Press Country of Publication: England NLM ID: 101566598 Publication Model: Electronic Cited Medium: Internet ISSN: 2160-1836 (Electronic) Linking ISSN: 21601836 NLM ISO Abbreviation: G3 (Bethesda) Subsets: MEDLINE
- Publication Information:
Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Bethesda, MD : Genetics Society of America, 2011-
- Subject Terms:
- Abstract:
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.
(Copyright © 2017 Bandeira e Sousa et al.)
- References:
Genetics. 2015 Mar;199(3):857-71. (PMID: 25614606)
Genet Res (Camb). 2010 Aug;92(4):295-308. (PMID: 20943010)
Genetics. 2010 Oct;186(2):713-24. (PMID: 20813882)
Genetics. 2009 May;182(1):375-85. (PMID: 19293140)
J Dairy Sci. 2008 Nov;91(11):4414-23. (PMID: 18946147)
BMC Genomics. 2014 Sep 29;15:823. (PMID: 25266061)
PLoS One. 2014 Apr 10;9(4):e91693. (PMID: 24722227)
Bioinformatics. 2012 Aug 1;28(15):2086-7. (PMID: 22689388)
Genetics. 2015 Oct;201(2):759-68. (PMID: 26219298)
Genetics. 2007 Dec;177(4):2389-97. (PMID: 18073436)
G3 (Bethesda). 2015 Feb 06;5(4):569-82. (PMID: 25660166)
Sci Rep. 2016 Jun 17;6:27312. (PMID: 27311707)
Theor Appl Genet. 2014 Mar;127(3):595-607. (PMID: 24337101)
Genet Sel Evol. 2013 Jun 13;45:17. (PMID: 23763755)
Am J Hum Genet. 2009 Feb;84(2):210-23. (PMID: 19200528)
Genetics. 2014 Oct;198(2):483-95. (PMID: 25009151)
Theor Appl Genet. 2014 Feb;127(2):463-80. (PMID: 24264761)
Genetics. 2013 Feb;193(2):327-45. (PMID: 22745228)
Genetics. 2006 Jul;173(3):1761-76. (PMID: 16648593)
Front Genet. 2014 Oct 16;5:363. (PMID: 25360145)
G3 (Bethesda). 2017 Jan 5;7(1):41-53. (PMID: 27793970)
G3 (Bethesda). 2016 Jul 07;6(7):1819-34. (PMID: 27172218)
G3 (Bethesda). 2017 Feb 9;7(2):481-495. (PMID: 27903632)
Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
Genetics. 2008 Apr;178(4):2289-303. (PMID: 18430950)
Plant Genome. 2016 Nov;9(3):null. (PMID: 27902799)
Heredity (Edinb). 2015 Mar;114(3):291-9. (PMID: 25407079)
G3 (Bethesda). 2012 Dec;2(12):1595-605. (PMID: 23275882)
- Contributed Indexing:
Keywords: Gaussian nonlinear kernel; GenPred; Genomic Best Linear Unbiased Predictor (GBLUP) linear kernel; Genomic Selection; Genotype× Environment interaction (G×E); Shared Data Resources
- Publication Date:
Date Created: 20170430 Date Completed: 20180326 Latest Revision: 20220331
- Publication Date:
20240829
- Accession Number:
PMC5473775
- Accession Number:
10.1534/g3.117.042341
- Accession Number:
28455415
No Comments.