A high-speed brain-computer interface (BCI) using dry EEG electrodes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Spüler M;Spüler M
  • Source:
    PloS one [PLoS One] 2017 Feb 22; Vol. 12 (2), pp. e0172400. Date of Electronic Publication: 2017 Feb 22 (Print Publication: 2017).
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals, the application of gel-based EEG is time-consuming and cumbersome. In order to achieve a more user-friendly system, this work explores the usability of dry EEG electrodes with a VEP-based BCI. While the results show a high variability between subjects, they also show that communication speeds of more than 100 bit/min are possible using dry EEG electrodes. To reduce performance variability and deal with the lower signal-to-noise ratio of the dry EEG electrodes, an averaging method and a dynamic stopping method were introduced to the BCI system. Those changes were shown to improve performance significantly, leading to an average classification accuracy of 76% with an average communication speed of 46 bit/min, which is equivalent to a writing speed of 8.8 error-free letters per minute. Although the BCI system works substantially better with gel-based EEG, dry EEG electrodes are more user-friendly and still allow high-speed BCI communication.
    • References:
      IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):228-35. (PMID: 22180514)
      Biomed Eng Online. 2013 Jun 25;12:56. (PMID: 23800158)
      Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23. (PMID: 2461285)
      Clin Neurophysiol. 2002 Jun;113(6):767-91. (PMID: 12048038)
      Front Neurosci. 2011 May 26;5:53. (PMID: 21647345)
      J Neural Eng. 2011 Apr;8(2):025008. (PMID: 21436526)
      PLoS One. 2007 Jul 25;2(7):e637. (PMID: 17653264)
      J Neurosci Methods. 2016 Jul 15;267:126-31. (PMID: 27091368)
      Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :1087-90. (PMID: 26736454)
      PLoS One. 2012;7(12):e51077. (PMID: 23236433)
      J Physiol Paris. 2011 Jan-Jun;105(1-3):106-14. (PMID: 21911058)
      Clin Neurophysiol. 2012 Jul;123(7):1328-37. (PMID: 22244309)
      Physiol Meas. 2015 Jul;36(7):1469-84. (PMID: 26020164)
      Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :1057-60. (PMID: 26736447)
      Front Neurosci. 2011 Oct 14;5:112. (PMID: 22016719)
      Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67. (PMID: 26483479)
      J Neural Eng. 2016 Aug;13(4):046021. (PMID: 27378253)
      Brain Topogr. 2010 Jun;23(2):194-8. (PMID: 19946737)
      IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):20-8. (PMID: 20064766)
      IEEE Trans Rehabil Eng. 1998 Sep;6(3):326-33. (PMID: 9749910)
      IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1097-103. (PMID: 24760910)
      J Neural Eng. 2013 Apr;10(2):026014. (PMID: 23448963)
      Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4580-3. (PMID: 22255357)
    • Publication Date:
      Date Created: 20170223 Date Completed: 20170821 Latest Revision: 20190208
    • Publication Date:
      20231215
    • Accession Number:
      PMC5321409
    • Accession Number:
      10.1371/journal.pone.0172400
    • Accession Number:
      28225794