Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A cross-validated cytoarchitectonic atlas of the human ventral visual stream.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Academic Press Country of Publication: United States NLM ID: 9215515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9572 (Electronic) Linking ISSN: 10538119 NLM ISO Abbreviation: Neuroimage Subsets: MEDLINE
- Publication Information:
Original Publication: Orlando, FL : Academic Press, c1992-
- Subject Terms:
- Abstract:
The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations.
(Copyright © 2017 Elsevier Inc. All rights reserved.)
- References:
Neuroimage. 2012 Jan 16;59(2):1369-81. (PMID: 21875671)
Neuron. 2012 Apr 12;74(1):12-29. (PMID: 22500626)
PLoS Comput Biol. 2014 Mar 27;10(3):e1003538. (PMID: 24676149)
J Cogn Neurosci. 2015 Mar;27(3):614-22. (PMID: 25313655)
J Neurosci. 2007 May 16;27(20):5326-37. (PMID: 17507555)
Dev Sci. 2009 Nov;12(6):F16-25. (PMID: 19840035)
Neuroimage. 2014 Oct 1;99:509-24. (PMID: 24971513)
Nature. 1991 Jan 10;349(6305):154-6. (PMID: 1986306)
J Neurosci. 2015 Oct 14;35(41):13943-8. (PMID: 26468195)
J Autism Dev Disord. 1994 Jun;24(3):247-57. (PMID: 8050980)
J Vis. 2016;16(6):14. (PMID: 27105060)
Science. 1995 May 12;268(5212):889-93. (PMID: 7754376)
Trends Cogn Sci. 2015 Jun;19(6):349-57. (PMID: 25850730)
Cereb Cortex. 2012 Jul;22(7):1698-709. (PMID: 21940707)
J Neurosci. 2010 Jul 21;30(29):9801-20. (PMID: 20660263)
Neuroimage. 2012 Aug 15;62(2):911-22. (PMID: 22248580)
Cereb Cortex. 1991 Jan-Feb;1(1):1-47. (PMID: 1822724)
Brain. 2008 Apr;131(Pt 4):987-99. (PMID: 18332073)
J Anat Physiol. 1907 Jul;41(Pt 4):237-54. (PMID: 17232738)
J Neurosci. 2015 Aug 26;35(34):11921-35. (PMID: 26311774)
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4429-34. (PMID: 21368161)
Brain. 2001 Oct;124(Pt 10):2059-73. (PMID: 11571222)
J Chem Inf Model. 2013 Jul 22;53(7):1689-99. (PMID: 23800267)
Trends Neurosci. 2013 May;36(5):275-84. (PMID: 23415112)
Hum Brain Mapp. 1999;8(4):272-84. (PMID: 10619420)
Arch Gen Psychiatry. 2000 Apr;57(4):331-40. (PMID: 10768694)
Cereb Cortex. 2008 Apr;18(4):846-67. (PMID: 17644831)
Neuroimage. 2007 Apr 1;35(2):836-52. (PMID: 17303440)
Nature. 1994 Jun 16;369(6481):525. (PMID: 8031403)
Neuroimage. 2013 Dec;83:1002-10. (PMID: 23899723)
J Neurosci. 2009 Aug 26;29(34):10638-52. (PMID: 19710316)
Cereb Cortex. 2009 Jul;19(7):1687-703. (PMID: 19015369)
Cereb Cortex. 2008 Aug;18(8):1973-80. (PMID: 18079129)
Neuroimage. 2005 May 15;26(1):73-82. (PMID: 15862207)
J Neurosci. 2011 Aug 10;31(32):11597-616. (PMID: 21832190)
Brain Struct Funct. 2013 Mar;218(2):511-26. (PMID: 22488096)
Neuroimage. 2014 Jan 1;84:453-65. (PMID: 24021838)
Neuron. 2009 Aug 13;63(3):397-405. (PMID: 19679078)
Science. 1992 Jan 24;255(5043):419-23. (PMID: 1734518)
Cereb Cortex. 2015 Oct;25(10):3911-31. (PMID: 25452571)
Hum Brain Mapp. 2007 Oct;28(10):1045-59. (PMID: 17266106)
Neuropsychologia. 2006;44(4):594-609. (PMID: 16125741)
Neuroimage. 2009 Jul 15;46(4):915-22. (PMID: 19328238)
Dev Sci. 2007 Jul;10(4):F15-30. (PMID: 17552930)
Neuron. 2015 Dec 16;88(6):1086-1107. (PMID: 26687219)
Neuroimage. 2006 Sep;32(3):1385-94. (PMID: 16870475)
Cereb Cortex. 2011 Jan;21(1):191-9. (PMID: 20457691)
Neuron. 2012 Nov 8;76(3):640-52. (PMID: 23141074)
Hum Brain Mapp. 2006 May;27(5):392-401. (PMID: 16596654)
J Neurosci. 1997 Sep 15;17(18):7079-102. (PMID: 9278543)
Brain Struct Funct. 2016 May;221(4):1877-97. (PMID: 25687261)
J Autism Dev Disord. 2009 Nov;39(11):1568-81. (PMID: 19582566)
Neuroimage. 2011 Jan 1;54(1):361-8. (PMID: 20682350)
Nat Med. 2013 Dec;19(12):1667-72. (PMID: 24185694)
Curr Opin Neurol. 2009 Aug;22(4):331-9. (PMID: 19512925)
Trends Cogn Sci. 2009 Nov;13(11):488-95. (PMID: 19758835)
Brain Struct Funct. 2013 Jan;218(1):157-72. (PMID: 22354469)
Nat Neurosci. 2003 Mar;6(3):309-15. (PMID: 12548289)
Vision Res. 2011 Apr 13;51(7):718-37. (PMID: 20692278)
Neuroimage. 2014 Oct 15;100:414-26. (PMID: 24939340)
Science. 2013 Jun 21;340(6139):1472-5. (PMID: 23788795)
Trends Cogn Sci. 2013 Jan;17(1):26-49. (PMID: 23265839)
Curr Biol. 2012 Nov 6;22(21):2081-5. (PMID: 23041195)
Neuropsychologia. 2016 Mar;83:48-62. (PMID: 26119921)
Neuroimage. 2007 Oct 1;37(4):1061-5; discussion 1066-8. (PMID: 17870622)
Neuroimage. 1999 Jan;9(1):165-77. (PMID: 9918738)
Nat Rev Neurosci. 2010 Feb;11(2):139-45. (PMID: 20046193)
Cereb Cortex. 2017 Jan 1;27(1):146-161. (PMID: 27909003)
Cereb Cortex. 2013 Sep;23(9):2261-8. (PMID: 22826609)
Neuroimage. 2005 May 1;25(4):1325-35. (PMID: 15850749)
Nat Neurosci. 2005 Aug;8(8):1102-9. (PMID: 16025108)
Nat Neurosci. 2007 Apr;10(4):512-22. (PMID: 17351637)
Nature. 2016 Aug 11;536(7615):171-178. (PMID: 27437579)
Trends Cogn Sci. 2004 Jul;8(7):315-24. (PMID: 15242691)
Nat Rev Neurosci. 2014 Aug;15(8):536-48. (PMID: 24962370)
J Neurophysiol. 2011 Sep;106(3):1125-65. (PMID: 21653723)
Neuroimage. 2000 Jan;11(1):66-84. (PMID: 10686118)
Hum Brain Mapp. 2015 Aug;36(8):3038-46. (PMID: 25988402)
Cereb Cortex. 2017 Jan 1;27(1):373-385. (PMID: 26464475)
J Neuropsychol. 2008 Mar;2(1):197-225. (PMID: 19334311)
- Grant Information:
R01 EY022318 United States EY NEI NIH HHS; R01 EY023915 United States EY NEI NIH HHS
- Contributed Indexing:
Keywords: Brain parcellation; Cortex-based alignment; Human brain atlas; Objecet recognition; Retinotopy; Visual cortex
- Publication Date:
Date Created: 20170219 Date Completed: 20181211 Latest Revision: 20240314
- Publication Date:
20240314
- Accession Number:
PMC5559348
- Accession Number:
10.1016/j.neuroimage.2017.02.040
- Accession Number:
28213120
No Comments.